Math 260A - Mathematical Logic - Scribe Notes
UCSD - Winter Quarter 2012
Instructor: Sam Buss
Notes by: David Lorant ${ }^{1}$
Wednesday, March 07, 2012

1 Extensions by Definitions - Function Symbols

Recall in the last lecture we showed that we could take a sentence $\varphi(\vec{x})$ and add a relation symbol $P(\vec{x})$ to create a conservative extension. Today will will be doing a similar idea but with adding functions. The general idea is you take a formula $\varphi\left(x_{1}, \ldots, x_{k}, y\right)$ and define a graph of $\mathrm{f}: ~ y=f\left(x_{1}, \ldots x_{k}\right)$.

Theorem 1. Let T_{1} be a set of sentences in language L. Suppose $T_{1} \models$ $\forall \vec{x} \exists y \varphi(\vec{x}, y)$. Let L^{\prime} be $L \cup\{f\}$, with f a new k-ary function. Let $T_{2}=$ $T_{1} \cup\{\forall \vec{x} \varphi(\vec{x}, f(\vec{x}))\}$. Then T_{2} is conservative over T_{1}.

Proof. By Contradiction
Suppose A is an L-sentence, such that $T_{2} \models A$ and $T_{1} \not \vDash A$. Then there's a model $\mathcal{M} \vDash T_{1}, \mathcal{M} \not \vDash A$. Form \mathcal{M}^{\prime} which is an expansion of \mathcal{M} to L^{\prime}, with $f^{\mathcal{M}^{\prime}}\left(m_{1}, \ldots, m_{k}\right)=$ some m such that $\mathcal{M} \models \varphi\left[m_{1}, \ldots m_{k}, m\right]$. We can do this since $\mathcal{M} \models \forall \vec{x} \exists y \varphi(\vec{x}, y)$. Now $\mathcal{M}^{\prime} \models T_{2}$ and $\mathcal{M}^{\prime} \not \vDash A$, which is a contradiction. $\Rightarrow \Leftarrow$

Before, we had the following statement: Any L^{\prime} formula A, has a corresponding L-formula A^{*} that means the same thing, but is in the smaller language via the translation $p\left(s_{1}, \ldots, s_{k}\right) \stackrel{*}{\longmapsto} \varphi\left(s_{1}, \ldots, s_{k}\right)$.

Unfortionately this doesn't work so well in this case. Suppose $T_{1} \models$ $\forall \vec{x} \exists y \varphi(\vec{x}, y)$ and we have a formula $A\left(f\left(s_{1}, \ldots, s_{k}\right)\right)$ in the larger language. How do we eliminate the f ?

One idea might be to take a new variable, say z and replace $A\left(f\left(s_{1}, \ldots, s_{k}\right)\right)$ with $\exists z\left(\varphi\left(s_{1} \ldots, s_{k}, z\right) \wedge A(z)\right)$. This idea almost works, but requires one extra condition.

$$
t_{1} \vdash \forall \vec{x} \exists!y A(\vec{x}, y)
$$

Definition 1. \exists ! (exists unique): $\left(\exists!y \varphi \equiv \exists y \varphi \wedge \forall y_{1}, y_{2}\left(\varphi\left(y_{1}\right) \wedge \varphi\left(y_{2}\right) \rightarrow y_{1}=y_{2}\right)\right)$

[^0]If we have the condition $t_{1} \vdash \forall \vec{x} \exists!y A(\vec{x}, y)$, then we can say $\exists z\left(\varphi\left(s_{1} \ldots, s_{k}, z\right) \wedge A(z)\right)$. This would also be equivilent to $\forall z\left(\varphi\left(s_{1} \ldots, s_{k}, z\right) \rightarrow A(z)\right)$

For this result, we needed:

1. Unique existence condition
2. $=$ in the language
3. A quantifier free ${ }^{2}$

Note:

Assigning constant to z in $\exists z(\varphi(\vec{s}, z) \wedge A(z))$ doesn't help. This would give you $\exists z(\varphi(\vec{s}, z) \wedge(z=c) \wedge A(z))$, which would be equivalent to $(\varphi(\vec{s}, c) \wedge A(c))$. The trouble is there may be lots of s 's occuring in the proof, or there may be quantified variables among the s 's. So you can't just get one c that works.

Note:

Remember that we start off with the hypothosis of $T_{1} \models A$, and end up with the conclusion that $T_{2} \models A$. With the star translation it's easy to translate, but without it might be double exponential blowup of proof size? Maybe superexponential? (possible open question)

2 Skolemnization Process

Let φ be of the form $\forall \vec{x} \exists y[\psi(\vec{x}, y)]$, where no other variables appear free in ψ

Definition 2. Pre-Skolem form of φ is $\forall \vec{x} \exists y[\psi(\vec{x}, f(\vec{x}))]$ where f is a new function symbol. Denote this $\varphi^{\left(s^{\prime}\right)}$. Note that $\varphi^{\left(s^{\prime}\right)} \models \varphi$.

Definition 3. The Skolem Definition for φ is the formula $\forall \vec{x}[\exists y \psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x}))]$
Claim 1. $\varphi+($ The Skolem definition for $\varphi)$ is conservative over φ.
Proof. $\varphi \models \forall \vec{x} \exists z[\exists y \psi(\vec{x}, y) \rightarrow \psi(\vec{x}, z)]$ since if there exists a y then z works, and if there isn't any y it doesn't matter what z you pick.

Claim 2. Let A be any sentence. Then $\varphi \models A \Leftrightarrow \varphi^{\left(s^{\prime}\right)} \models A$.

[^1]Proof. \Rightarrow Trivial since φ is weaker
\Leftarrow Assume $\varphi^{\left(s^{\prime}\right)} \models A$. It follows that $\varphi \wedge$ (The Skolem definition for $\varphi) \models A$, since $\varphi \wedge$ (The Skolem definition for $\varphi) \models \varphi^{\left(s^{\prime}\right)}$. As shown above, $\varphi+($ The Skolem definition for $\varphi)$ is conservative over φ, so $\varphi \models A$

3 Why is the Skolemnization process useful?

Suppose φ is in prenex form.
Definition 4. Define φ^{s} to be $\left(\ldots\left(\left(\varphi^{s^{\prime}}\right)^{s^{\prime}}\right)^{s^{\prime}} \ldots\right)^{s^{\prime}}$ getting rid of all the existential quantifiers. That meas φ^{s} is universal in a language that is larger than φ, and φ^{s} is conservative over φ.

Definition 5. Let Γ be a set of sentences in prenex form. Define $\Gamma^{s}=$ $\left\{\varphi^{s}: \varphi \in \Gamma\right\}$. Γ^{s} is conservative over Γ by the compactness theorem.

Remember that $\Gamma \models A$ is the same as "is $\Gamma \cup\{\neg A\}$ inconsistent?", which is the same as "is $(\Gamma \cup\{\neg A\})^{s}$ inconsistent?".

The next step will be to get rid of the universal quantifiers to make it equivalent to asking "is $\left\{A_{1}, \ldots, A_{k}\right\}$ inconsistent?", which in turn is the same as "is $B=\left(A_{1} \wedge \cdots \wedge A_{k}\right)$ inconsistent?", which finally is the same as $\vDash \neg B$?

Since B is universal WLOG, $\neg B=\exists y_{1}, \ldots, \exists y_{k} C\left(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{k}\right)$
Herbrand's Thorem states that $=\exists y_{1}, \ldots, \exists y_{k} C\left(x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{k}\right) \Leftrightarrow$ \exists a finite list of terms $t_{1,1}, \ldots t_{1, k}, t_{2,1}, \ldots t_{2, k}, \ldots, t_{m, 1}, \ldots t_{m, k}$ such that $\vDash \bigvee_{j=1}^{s} C\left(\vec{x}, t_{j, 1}, \ldots, t_{j, k}\right)$ (note this has no quantifiers). We have now reduced to quantifier free formulas, so now this is true iff it follows tautologically from equality axioms.

[^0]: ${ }^{1}$ Based on handwritten class notes by Matt Pead

[^1]: ${ }^{2}$ This is not a problem since we could apply the translation to atomic or quantifier free subformulas of A

