Math 260A — Mathematical Logic — Scribe Notes UCSD — Winter Quarter 2012 Instructor: Sam Buss Notes by: Tanya Hall Friday, March 2nd, 2012

1 (Failed) Proof: Completeness for Uncountable Languages

Let L be a language of cardinality κ

Let Γ be a set of L-sentences.

Either there is a model M of Γ or there exists a finite $\Gamma_0 \subseteq \Gamma$ such that

 $\Gamma_0 \rightarrow$

has a proof.

Cardinality of Γ is $\leq \kappa$ (since the set of L-sentences has cardinality $=\kappa$)

Enumerate Γ as a well-ordered sequence $\gamma_0, \gamma_1, \gamma_2, ..., \gamma_{\kappa}$

Assume there is an inexhaustible supply of variables (need κ many)

Form Λ, Ξ as before

 $\Lambda\subseteq\Gamma$

 Λ, Ξ satisfy closure properties (1)-(6)

Do it in steps:

Definition:

$$\Lambda_{\alpha}, \Xi_{\alpha} \ \alpha \le \kappa$$
$$\Lambda_{-1} = \Xi_{-1} = \emptyset$$

Assume $\Lambda_{\beta}, \Xi_{\beta}$ have been defined for all $\beta < \alpha$

Construct $\Lambda_{\alpha}, \Xi_{\alpha}$ such that there is no finite $\Gamma_0 \subseteq \Lambda_{\alpha} \cup \Gamma$, $\Delta_0 \subseteq \Xi_{\alpha}$ such that $\Gamma_0 \to \Delta_0$ has a proof, and such that $\Lambda_{\alpha}, \Xi_{\alpha}$ satisfy conditions (1)-(6), and $\gamma_{\beta} \in \Lambda_{\alpha}$ for $\beta \leq \alpha$.

To define $\Lambda_{\alpha}, \Xi_{\alpha}$ work backwards from the sequent

 $\gamma_{\alpha} \rightarrow$

and try to give a proof.

Define "active":

 $\Gamma' \to \Delta'$ is active if there is no finite $\Gamma_0 \subseteq \bigcup_{\beta < \alpha} \Lambda_\beta \cup \Gamma$, $\Delta_0 \subseteq \bigcup_{\beta < \alpha} \Xi_\beta$, such that $\Gamma_0, \Gamma' \to \Delta_0 \Delta'$ has a proof.

Form an "unproof" of $\gamma_{\alpha} \rightarrow$ as before, which has an infinite branch of nonactive sequents. Let:

$$\begin{split} \Lambda_{\alpha} &= (\bigcup_{\beta < \alpha} \Lambda_{\beta}) \cup \{ \text{ formulas in antecedents of this finite branch} \}, \text{ and} \\ \Xi_{\alpha} &= (\bigcup_{\beta < \alpha} \Xi_{\beta}) \cup \{ \text{ formulas in succedents of this finite branch} \}. \end{split}$$

Modifications:

Omit step 1.

Enumerate formulas that appear in the active sequent.

-Say, pick the last to have been worked with and it has $\exists x \varphi(x)$.

Problem: The following condition should hold, but does not: If $\forall x \varphi(x)$ is in Λ , then $\varphi(t)$ is in Ξ for all terms t.

2 Traditional Proof of Completeness for Uncountable Languages

We'll define sets Λ_{α} , Ξ_{α} .

(1) There is no finite $\Gamma_0 \subseteq \Lambda_\alpha$ and finite $\Delta_0 \subseteq \Xi_\alpha$ such that $\Gamma_0 \to \Delta_0$ has a proof.

(2) $\Gamma \subseteq \Lambda_{\alpha}$

Set $\kappa = \{0, 1, 2, ..., \alpha, ...\}$

Where A is an L-sentence and t an L-term, enumerate all pairs $\langle A, t \rangle$:

 $\langle A_0,t_0\rangle,\,\langle A_0,t_1\rangle,\,\ldots\,,\langle A_1,t_0\rangle,\,\ldots\,,\,\langle A_\alpha,t_\alpha\rangle,\,\ldots$

such that for all pairs $\langle A, t \rangle$ and all $\beta \in \kappa$ there exists $\alpha > \beta$ such that $\langle A, t \rangle = \langle A_{\alpha}, t_{\alpha} \rangle$.

For this it is sufficient to assume that each $\langle A, t \rangle$ appears κ -many times.

Define Λ , Ξ satisfying (1) and (2) Initially $\Lambda_{-1} = \Gamma$ and Ξ_{-1} is \emptyset Suppose Λ_{β} , Ξ_{β} are defined for all $\beta < \alpha$ Let $\Lambda_{\alpha}^{-} = \bigcup_{\beta < \alpha} \Lambda_{\beta}$ (= $\Lambda_{\alpha-1}$ if $_{\alpha-1}$ exists) $\Xi_{\alpha}^{-} = \bigcup_{\beta < \alpha} \Xi_{\beta}$

Skip step (1). Do step (2) and (3)

Step (2)

If $A_{\alpha} \in \Lambda_{\alpha}^{-}$, and A_{α} is $\varphi \wedge \psi$, put $\Lambda_{\alpha} = \Lambda_{\alpha}^{-} \cup \{\varphi, \psi\}$ and $\Xi_{\alpha} = \Xi_{\alpha}^{-}$

If $\exists \ \Gamma_0 \subseteq \Lambda_\alpha, \ \Delta_0 \subseteq \Xi_\alpha$ such that $\Gamma_0 \to \Delta_0$ has a proof, then $\Gamma_0 = \Gamma_o^- \cup \{\varphi, \psi\}$

$$\frac{\Gamma_0^-, \varphi, \psi \to \Delta_0}{\Gamma_0^-, \varphi \land \psi \to \Delta_0} \qquad \text{Where } \Gamma_0^-, \varphi \land \psi \subseteq \Lambda_\beta \text{ for some }_{\alpha < \beta} \text{ and } \Delta_0 \subseteq \Xi_\beta \text{ for some }_\beta$$

Step (3)

If $A_{\alpha} \in \Lambda_{\alpha}^{-}$, and A_{α} is $\varphi \lor \psi$, put either

 $\Lambda_{\alpha} = \Lambda_{\alpha}^{-} \cup \{\varphi\} \text{ and } \Xi_{\alpha} = \Xi_{\alpha}^{-}$ or

$$\Lambda_{\alpha} = \Lambda_{\alpha}^{-} \cup \{\psi\} \text{ and } \Xi_{\alpha} = \Xi_{\alpha}^{-}$$

 \dots Whichever satisfies condition (1)

Finally, set $\Lambda = \bigcup_{\beta < \kappa} \Lambda_{\beta}$ and $\Xi = \bigcup_{\beta < \kappa} \Xi_{\beta}$ So \exists a model M such that

let $\sigma(c) = c$ or $\sigma(c) = [c]$

Then $M \models \lambda[c]$ for all $\lambda \in \Lambda$ and $M \not\models \{[c] \text{ for all } \} \in \Xi$

So M shows Γ is satisfiable.