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An Application of the Los-Vaught Theorem (cont.)

Recall from last time the theory Th(N,0,S) and the theory T, defined as
follows:

Y),

T = {VaVy(S(y) = S(z) < =
y) =),

Va(x # 0 < Jy(S(
vz(S(z) # x),

where the last sentence appears once for each k > 1. As we saw last time,
there are two models of T' with cardinality Ng: the standard model N7 =
(N,0,5) and the Z-chain model, N5.

Claim 1. Nl ENQ.
Theorem 1. T is k-categorical for any k > Ng.

Proof. Observe that any model M such that M |= T has to contain a copy
of N, some disjoint Z-chains, and nothing else. The isomorphism class of M
is then determined by the number of Z-chains it contains. In other words,
apply SM to OM to generate a copy of N with no loops:

OMSM 1 sM 2 SM...

This accounts for Ny many of the elements of |M].
Take one of the remaining elements, call it «, and do the same thing.
However, since o # 0, by the second axiom there is some element v — 1 such



that S(a — 1) = a. So the chain extends in both directions, making it a
Z-chain:
SM SM SM SM
—a—-1——a—a+1—---

Again, take any other element o' and do the same. The Z-chain generated
by o can’t intersect the Z-chain generated by «a at any point, since every
element has a unique predecessor and a unique successor, and o’ doesn’t
lie on a’s Z-chain. You can do this x many times, so the cardinality of M
is Ng + k- Xg = k. Note that when k = Ny, the cardinality of M is Ny,
and M is also a model of Th(N,0,.5). Since this M 2 (N,0,S5), T is not
Ng-categorical, as we’ve seen.

However, if M and M’ are two models of T that have the same cardinal-
ity (> Ng), they’re isomorphic, since any 2 Z-chains are isomorphic. Hence
T is k-categorical. O

Corollary 1. T is complete.

Proof. T has no finite models, since any model of T" contains a copy of N.
T is k-categorical for k > Ny, and the language has cardinality Ry. So by
the Los-Vaught Test, T' is complete. ]

Corollary 2. T = Th(N,0, S).

Proof. Clearly T'C Th(N, 0, ), since all of the statements in 7" are true of
(N,0,5). As we've seen, Th(N, 0, .5) is consistent and complete. But for all
sentences ¢, either T' = ¢ or T' |= =, and T' can only imply things that are
consistent with Th(N, 0, S). Since T is complete, it implies everything that
is consistent with Th(N, 0, S), which is Th(N, 0, S) itself. O

Corollary 3. Cn(T) = Th(N,0,S)
Corollary 4. N1 = MN,. That is,

M E ¢ pe ThN,0,S)
No = p < p e TN, 0,S)

Nonstandard Integers

It was said that, in the model of (N,0,S) with extra elements, the extra
elements (the nonstandard integers) were in some sense “larger” than all of
the standard integers. Since the nonstandard integers are inaccessible from
the standard integers by S, what could it mean to say that they are larger?



Consider such a model in a language that includes + and -.
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As we saw, from axiom 2 of T' & has a chain of predecessors, but it does not
include 0. We can define x < y in the following way:

x<y:=3z(x+S(z) =vy)

Then o > 0, since 0+ S(a—1) = a, and (a—1) < a, since (a«—1)+S5(0) = .

Since the model satisfies Th(N), we can say other things about «, like
whether it is even or odd:

2((z4+2z=a)V(z+2+1=0q)).

Let z = %a and 2/ = %a, and suppose that « is a multiple of 6. Then
32 = 22 = a. If 2/ and 2z belong to the same Z-chain, then 2z’ — z is
some number. Suppose it is 17; then 2/ = z — 17, and we can use this and
37 = 2z = « to find «, which is some finite number. But since we know
« isn’t finite, %a, %04, and « all must live in different chains. So must /a,
which is smaller than %a for all n in the N-chain.

Theorem 2. There is no way to give a procedure to specify a full model of
(N,0,8,+,-). There must be one, by completeness, but we can’t specify an
algorithmic procedure to construct it. That is, it has no computable model.

Returning to Th(N, 0, S), we do get a computable model:

° °
N-chain Z-chain

which we can specify as {(0,7) | i € N} U{(1,4) | ¢ € Z}. then
S((0,4)) = (0,i + 1)
S((1,i)) =(1,i+1)

This model satisfies Th(N,0,.S), which isn’t hard to prove, but we don’t
have the tools yet. Stay tuned next quarter for the exciting conclusion!

Skolem’s Paradox

Consider set theory. More specifically, consider the language {€,=} of set
membership and equality. The following comprise a subset of the axioms of
set theory:



Extensionality VaVy(z =y < Vz(z € x <> 2z € y)).

Union (weak form) VaVydz(Vw(w € z <> w € x Vw € y)).
The stronger form of this axiom is about the existence of a union of a

set of sets.
We can define integers using Von Neumann’s definition:
0=10
1={0} = {0}
2=A{0,{0}} ={0,1}
3={0.{0.{0}}} ={0,1}

n=40,1,...,n—1}

w=1{0,1,2,...}

Where w is the set of all integers. You can write out axioms specifying what
it means to be an integer and what it means to be the smallest infinite set
(w).

Ordered pairs are given by sets: (z,y) = {{z}, {z,y}}. Functions, then,
are sets of ordered pairs. The power set of a set x is the set of functions
from z to the set 2.!

Theorem 3. There exists an uncountable set.

Consider the particular axiomatization given by Zermelo-Fraenkel set
theory with Choice (ZFC) which is presumably consistent, hence has a
model.? By the downward Lowenheim-Skolem theorem, then, it has a count-
able model. But this is weird, since by Theorem 3 it contains an uncountable
set. We also have

Theorem 4. There is no largest cardinal.

So the set that we usually call R is described by ZFC, and must be contained
in its countable model M. Quasi-formally,

M = 3R[-3 a 1-1 function f: R — NI.

'Prof. Buss didn’t give a definition of power set, though he wrote “power set” on the
board. This seemed like the obviously intended definition, given the context. — JD

2Tt can only prove itself consistent if it is inconsistent, which see G6del’s second incom-
pleteness theorem.



In “real life” we know that this sentence is true, but it’s not clear how it
could be true in M. Note that, trivially,

RM = {m e M| | m e RM} €M,

which is countable. Given all of the functions in mathematics, there must
be one sending this R to N bijectively. The resolution to the paradox is
noting that this function f doesn’t exist in M, though it does in “real
life.” The paradox is generated by not observing the distinction between the
object language of the model of ZFC and the metalanguage of mathematical
practice.

Other zany consequences obtain. There’s even another model of ZFC in
M. We could also add ¢ € |[M| and the axioms {c # 0,¢ # 1,...} and get
nonstandard integers.

Completeness for uncountable languages (k > N)
Given the Axiom of Choice, we have the following fact about cardinals:

Theorem 5. Any set can be well-ordered.

In fact, we view a cardinal k as a well-ordering of cardinality k. Take a
canonical set K of size k:

size Kk
° ° ° ° o
0 1 2 3

This can be done so that no proper initial ordering has cardinality . Stick
a new element on top:

size Kk
. . . . PR a PEEErY R
0 1 2 3

The set is still a well-ordering, and it still has cardinality . So there
must be some first element such that all larger well-orders have cardinality s
and all proper initial segments are smaller than x. Then & is the well-order
such that no proper initial segment has size k.



