Math 260A — Mathematical Logic — Scribe Notes UCSD — Winter Quarter 2012 Instructor: Sam Buss

Notes by: Matt Pead Monday, February 27, 2012

1 Löwenheim-Skolem Theorems

Recall the following from last lecture:

Theorem 1. If a set of sentences T is consistent, in a language L of cardinality κ , then T has a model of cardinality $\leq \{\aleph_0, \kappa\}$

Corollary 1 (The Downward Löwenheim-Skolem Theorem). Suppose a language L has cardinality κ , and a set of sentences T has a model of cardinality $\kappa' > \kappa$, then T has a model of cardinality max $\{\aleph_0, \kappa\}$, assuming κ' infinite.

Proof. Enlarge language L to

 $L' = L \cup \{C_{\alpha} : \alpha < max\{\aleph_0, \kappa\}\}$

Where C_{α} 's are $max\{\aleph_0, \kappa\}$ many new constant symbols. Set

$$T' := T \cup \{C_{\alpha} \neq C_{\beta} : \alpha \neq \beta\}$$

T' has a model of cardinality κ' , and T' has a model of cardinality $\leq max\{\aleph_0,\kappa\}$ ($\kappa < \aleph_0 L'$ -cardinality \aleph_0)

T' has no models of cardinality $\langle max\{\aleph_0,\kappa\}$ since the C_{α} 's have to have distinct interpretations. Therefore, T must have a model of cardinality $max\{\aleph_0,\kappa\}$.

Theorem 2 (The Upperward Löwenheim-Skolem Theorem). If T has an infinite model, then for all $\kappa' \geq max\{\aleph_0, \kappa\}$, T has a model of cardinality κ' .

Proof. Similar to the Downward Lowenheim-Skolem Theorem, but note every finite subset of

$$T \cup \{C_{\alpha} \neq C_{\beta} : \alpha \neq \beta < max\{\aleph_0, \kappa\}\}$$

is consistent.

Can replace the hypothesis that T has an infinite model with "T has models of arbitrarily large finite size". That is, $\forall n \exists m \geq n, T$ has a model of size $m \ (m, n \in \mathbb{N})$.

Definition 1. T is **categorical** iff any two models of T are isomorphic.

Definition 2. T is κ -categorical iff T has only one model of cardinality κ , up to isomorphism.

Consider a finite structure \mathcal{M} , $|\mathcal{M}| = n$, and suppose language of \mathcal{M} is finite.

Theorem 3. There exists a single sentence φ such that the only model of φ is \mathcal{M} , up to isomorphism.

Proof. φ is:

$$(\exists x_1 \exists x_2 \dots \exists x_n) [\forall y (y = x_1 \lor y = x_2 \lor \dots \lor y = x_n) \\ \land (\bigwedge_{i < j} x_i \neq x_j) \\ \land (\bigwedge \text{ giving all values of } f) \\ \land (\bigwedge \text{ giving all values of } P)]$$

Note that φ is categorical.

2 Łoś -Vaught

If a set of sentences T is κ' -categorical and has no finite models, where $\kappa' \geq \kappa$ (κ -cardinality of the language), then T is complete.

Recall for Th a theory, Th is complete iff for all sentences $\varphi, \varphi \in Th$ or $\neg \varphi \in Th$.

Definition 3. For T a set of sentences, T is complete iff for all sentences φ , $T \models \varphi$ or $T \models \neg \varphi$ (Think of T as a set of axioms, identifying this with Cn(T)).

Proof. Suppose T is not complete, so $T \cup \{\varphi\}$ and $T \cup \{\neg\varphi\}$ are both consistent, for some sentence φ .

Lemma 1. Let T be a set of sentences, φ a sentence, $T \models \varphi$ iff $T \cup \{\neg \varphi\}$ is not consistent.

Take model $\mathcal{M}_1 \models T \cup \{\varphi\}$ and model $\mathcal{M}_2 \models T \cup \{\neg\varphi\}$. By Upperward Lowenheim-Skolem Theorem, \mathcal{M}_1 and \mathcal{M}_2 can be chosen to have cardinality κ' .

So $\mathcal{M}_1 \cong \mathcal{M}_2$ and we have a contradiction.

Example 1.

$$T = \{ \exists x \forall y (x = x) \lor G_k : k \le 1 \}$$

T is \aleph_0 -categorical. $T = \{a\}, T \models \exists x \forall y (x = y), T \not\models \neg \exists x \forall y (x = y)$

$$G_k: \exists \geq k \text{ element}$$

$$G_k := \exists x_1 \dots \exists x_k (\bigwedge_{i < j} x_i \neq x_j)$$

Let T be $\{G_k : k \ge 2\}$. T is κ -categorical for all κ , so T is complete.

Example 2. Let language $L = \{0, S\}$, the idea is $(\mathbb{N}, 0, S)$.

Axioms:

- 1. $\forall x (\exists y (S(y) = x) \leftrightarrow x \neq 0)$
- 2. $\forall x \forall y (S(x) = S(y) \leftarrow x = y)$
- 3. $\forall x(S(S(\ldots S(x) \ldots)) \neq x) \text{ for all } k \ge 1$

Let T =Set of these axioms.

Claim 1. T is κ -categorical for all $\kappa > \aleph_0$ but T is not \aleph_0 -categorical.

If this claim is correct, then T is complete, and also $T \models Th(\mathbb{N}, 0, S)$.