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1 Lowenheim-Skolem Theorems

Recall the following from last lecture:

Theorem 1. If a set of sentences T is consistent, in a language L of car-
dinality k, then T has a model of cardinality < {Ro, Kk}

Corollary 1 (The Downward Léwenheim-Skolem Theorem). Suppose a lan-
guage L has cardinality k, and a set of sentences T' has a model of cardinality
k' > Kk, then T has a model of cardinality maz{Xo, k}, assuming ' infinite.

Proof. Enlarge language L to
L'=LU{C,:a<max{Ro,k}}
Where C,’s are maz{Xg, £} many new constant symbols. Set
T :=TU{Ca#Cs:a#B)

T’ has a model of cardinality x’, and 7" has a model of cardinality
< max{Rg, £} ( kK <Ny L'-cardinality Xy )

T’ has no models of cardinality < maxz{Xg, x} since the C,’s have to
have distinct interpretations. Therefore, T must have a model of cardinality
max{No, k}. O

Theorem 2 (The Upperward Lowenheim-Skolem Theorem). If T' has an

infinite model, then for all k' > max{Ro,k}, T has a model of cardinality

K.

Proof. Similar to the Downward Lowenheim-Skolem Theorem, but note ev-
ery finite subset of

TU{Cq # Cs:a# B < max{Xo,k}}

is consistent. O



Can replace the hypothesis that T has an infinite model with “T" has
models of arbitrarily large finite size”. That is, Vn 3m > n, T has a model
of size m (m,n € N).

Definition 1. T is categorical iff any two models of T are isomorphic.

Definition 2. T is k-categorical iff T has only one model of cardinality
K, up to isomorphism.

Consider a finite structure M, |M| = n, and suppose language of M is
finite.

Theorem 3. There exists a single sentence @ such that the only model of
@ is M, up to isomorphism.

Proof. ¢ is:

(Fz13ze ... Fzy)[Vyly =21 Vy =22 V- VY =2,)

NN i # )

1<j
A( /\ giving all values of f)

A( /\ giving all values of P)]

Note that ¢ is categorical.

2 Lo$ -Vaught

If a set of sentences T is k’-categorical and has no finite models, where ’ > &
(k-cardinality of the language), then 7' is complete.

Recall for Th a theory, Th is complete iff for all sentences ¢, p € Th or
—p € Th.

Definition 3. For T a set of sentences, T is complete iff for all sentences
o, T E @ orT | —p (Think of T as a set of axioms, identifying this with
Cn(T)).

Proof. Suppose T is not complete, so T'U {¢} and T'U {—p} are both con-
sistent, for some sentence .



Lemma 1. Let T be a set of sentences, ¢ a sentence, T |= ¢ iff T U {—p}
18 mot consistent.

Take model M; =T U{p} and model My =T U {—¢}. By Upperward

Lowenheim-Skolem Theorem, M7 and My can be chosen to have cardinality

/4-?,

So M = My and we have a contradiction.

Example 1.
T ={3aVy(x =2) VG : k <1}

T is Wo-categorical. T' = {a}, T = JaVy(z = y), T = -FaVy(x = y)
Gy, : 3 > k element
G :==3x; ... Elxk(/\ Ty # T5)
i<j

Let T be {G} : k > 2}. T is k-categorical for all k, so T' is complete.
Example 2. Let language L = {0, S}, the idea is (N, 0, .5).

Axioms:

1. Vz(3y(S(y) =) <> x #0)

2. VaVy(S(z) = S(y) «+ z =1y)

3. Vx(S(S(...S(xz)...)) #x) forall k > 1

Let T' = Set of these axioms.

Claim 1. T is k-categorical for all Kk > Rg but T is not Rg-categorical.

If this claim is correct, then T' is complete, and also T' = Th(N, 0, S).



