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In the previous lecture we proved there is no set Γ of sentences in any language which
characterizes equality. That is to say such that ifM � Γ thenM is finite. Conversely recall from
homework 2 problem 12 there does exist a set Γ of sentences such that M � Γ if and only if M
is infinite. To see this let Gk : ∃x1∃ . . . ∃xk(

∧
i<j xi 6= xj) and Lk : ∃x1∃ . . . ∃xk∀y(

∨
i<j y = xk)

observe ¬Lk ⇐⇒ gk+1. Letting Γ = {Gk}k≥0 satisfies our requirement. Note that there is no
way to express a compliment of Γ

Definition 1. For a structure M the size or cardinality of the structure refers to the size of
|M|

Definition 2. The theory of a structure N , Th(N ) denotes the set of sentences true in N .
That is Th(N ) = {ϕ : N �, ϕ a sentence)

Definition 3. A theory T is a set of sentences closed under logical consequence. That is to say
if T � ϕ where ϕ is a sentence then ϕ ∈ T .

Definition 4. Consequence is denoted Cn(T ) = {ϕ : T � Φ,ϕ a sentence}

Definition 5. A theory T is complete if for all sentences ϕ ∈ T or ¬ϕ ∈ T .

Theorem 1. There exists a model M such that M � N and M � Th(N )

Definition 6. If M is isomorphic to N denoted M ∼= N then there exists a bijection h :
|M| → |N | such that h(cM) = cN . For all m1,m2, . . .mk ∈ |M|, < m1,m2, . . .mk >∈ PM iff
< h(m1), h(m2), . . . h(mk) >∈ PN . Also h(fM(m1, . . .mk)) = fN (h(m1), . . . h(mk)).

Definition 7. M is elementarily equivalent to N denoted M ≡ N if and only if for all
sentences ϕ, M � iff N � ϕ

Before proving the theorem stated above, we shall prove a specific case of it.

Theorem 2. There exists a structure with the same propositions as N but not N.

Proof. Let L′ be the language with model (N, 0, S,+, ·, c). The same as the model N ( with
language L) but with a new constant c added. Let T ′ := Th(N )∪ {¬(c = 0),¬(c = S(0)),¬(c =
S(S(0))), . . . } I claim T ′ is consistent. Suppose it were not then T ′k := Th(N ) ∪ {(c 6= 0), (c 6=
S(0)), (c 6= S(S(0))), . . . , c 6= Sk(0)} is not consistent for some k. Where Sk(0) is S applied k
times. But N ′k = (N, 0, S,+, ·, k + 1) where k + 1 = cN is a model for T ′k.

Since T ′ is consistent it has a model M′ (by completeness). Take the restriction of M′ to
language L. Call this M. (in original language) We will now establish N ∼=M. Consider:
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h : |N | → |M|
h(0) = 0M

h(1) = SM(0M)

h(k) = SM(SM(. . . 0M))

None the less cM
′
/∈ range of h.

Observe that cM
′

is larger than all of the integers because for any k, ∀x(x 6= 0∧x 6= 1 . . . x 6=
k → k < x).

Definition 8. A theory T is categorical iff it has up to isomorphism a unique model. In
practice this is rare

For example Th(N ) is not categorical.

Definition 9. A model M of T is a structure satisfying T .

Definition 10. A cardinal is a size of a set. The countable cardinals consist of 0, 1, 2, . . . as
well a |N|, ω, or ℵ0. The uncountable cardinals (assuming the axiom of choice) are ℵ1,ℵ2, . . . , c

Theorem 3. Let κ be a cardinal. For any infinite κ there is a structure M of cardinality κ s.t
M≡ (N, 0, S,+, ·)

Proof. Let L′ = {0, S,+, ·} ∪ {cα : α ∈ [κ]} . T ′ = Th(N, 0, S,+, ·) ∪ {cα 6= cβ : α 6= β ∈ [κ]} By
the compactness theorem T ′ is consistent and by the completeness theorem T ′ has a model. We
can apply the same argument as before. Note the the strong form of the completeness theorem
remains to be proved.

Back to Completeness
Recall if T � Γ→ ∆ then there exists a LK-proof of T0,Γ→ δ, where T0 is a finite subset of

T . In our proof of completeness we assumed the language countable (enumerated all formulas)
and obtained a modelM and a σ such thatM � T,Γ[σ] andM 2 ∆[σ]. M was countable with
only countably many terms.

Theorem 4. If T is consistent, or equivalently no LK proof of T0 → exists when T0 is a finite
subset of T , then T is a countable model provided the language is countable.

Theorem 5. If T is consistent in a language of cardinality κ then T has a model of cardinality
less then or equal to κ.
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