Math 260A Homework 3

Fletcher Stump Smith

February 28, 2012

In the previous lecture we proved there is no set Γ of sentences in any language which characterizes equality. That is to say such that if $\mathcal{M} \models \Gamma$ then \mathcal{M} is finite. Conversely recall from homework 2 problem 12 there does exist a set Γ of sentences such that $\mathcal{M} \models \Gamma$ if and only if \mathcal{M} is infinite. To see this let $G_k : \exists x_1 \exists \ldots \exists x_k (\bigwedge_{i < j} x_i \neq x_j)$ and $L_k : \exists x_1 \exists \ldots \exists x_k \forall y (\bigvee_{i < j} y = x_k)$ observe $\neg L_k \iff g_{k+1}$. Letting $\Gamma = \{G_k\}_{k \geq 0}$ satisfies our requirement. Note that there is no way to express a compliment of Γ

Definition 1. For a structure \mathcal{M} the *size* or *cardinality* of the structure refers to the size of $|\mathcal{M}|$

Definition 2. The **theory** of a structure \mathcal{N} , $Th(\mathcal{N})$ denotes the set of sentences true in \mathcal{N} . That is $Th(\mathcal{N}) = \{\varphi : \mathcal{N} \vDash, \varphi \text{ a sentence}\}$

Definition 3. A theory T is a set of sentences closed under logical consequence. That is to say if $T \vDash \varphi$ where φ is a sentence then $\varphi \in T$.

Definition 4. Consequence is denoted $Cn(T) = \{\varphi : T \models \Phi, \varphi \text{ a sentence}\}$

Definition 5. A theory T is complete if for all sentences $\varphi \in T$ or $\neg \varphi \in T$.

Theorem 1. There exists a model \mathcal{M} such that $\mathcal{M} \ncong \mathcal{N}$ and $\mathcal{M} \vDash Th(\mathcal{N})$

Definition 6. If \mathcal{M} is isomorphic to \mathcal{N} denoted $\mathcal{M} \cong \mathcal{N}$ then there exists a bijection h: $|\mathcal{M}| \to |\mathcal{N}|$ such that $h(c^{\mathcal{M}}) = c^{\mathcal{N}}$. For all $m_1, m_2, \ldots m_k \in |\mathcal{M}|, < m_1, m_2, \ldots m_k > \in P^{\mathcal{M}}$ iff $< h(m_1), h(m_2), \ldots h(m_k) > \in P^{\mathcal{N}}$. Also $h(f^{\mathcal{M}}(m_1, \ldots m_k)) = f^{\mathcal{N}}(h(m_1), \ldots h(m_k))$.

Definition 7. \mathcal{M} is elementarily equivalent to \mathcal{N} denoted $\mathcal{M} \equiv \mathcal{N}$ if and only if for all sentences φ , $\mathcal{M} \vDash iff \mathcal{N} \vDash \varphi$

Before proving the theorem stated above, we shall prove a specific case of it.

Theorem 2. There exists a structure with the same propositions as \mathbb{N} but not \mathbb{N} .

Proof. Let L' be the language with model $(\mathbb{N}, 0, S, +, \cdot, c)$. The same as the model \mathcal{N} (with language L) but with a new constant c added. Let $T' := Th(\mathcal{N}) \cup \{\neg(c=0), \neg(c=S(0)), \neg(c=S(0)), \neg(c=S(0)), \ldots\}$ I claim T' is consistent. Suppose it were not then $T'_k := Th(\mathcal{N}) \cup \{(c \neq 0), (c \neq S(0)), (c \neq S(S(0))), \ldots, c \neq S^k(0)\}$ is not consistent for some k. Where $S^k(0)$ is S applied k times. But $\mathcal{N}'_k = (\mathbb{N}, 0, S, +, \cdot, k+1)$ where $k+1 = c^{\mathcal{N}}$ is a model for T'_k .

Since T' is consistent it has a model \mathcal{M}' (by completeness). Take the restriction of \mathcal{M}' to language L. Call this \mathcal{M} . (in original language) We will now establish $\mathcal{N} \cong \mathcal{M}$. Consider:

$$h : |\mathcal{N}| \to |\mathcal{M}|$$

$$h(0) = 0^{\mathcal{M}}$$

$$h(1) = S^{\mathcal{M}}(0^{\mathcal{M}})$$

$$h(k) = S^{\mathcal{M}}(S^{\mathcal{M}}(\dots 0^{\mathcal{M}}))$$

None the less $c^{\mathcal{M}'} \notin$ range of h.

Observe that $c^{\mathcal{M}'}$ is larger than all of the integers because for any k, $\forall x (x \neq 0 \land x \neq 1 \ldots x \neq k \rightarrow k < x)$.

Definition 8. A theory T is categorical iff it has up to isomorphism a unique model. In practice this is rare

For example $Th(\mathcal{N})$ is not categorical.

Definition 9. A model \mathcal{M} of T is a structure satisfying T.

Definition 10. A cardinal is a size of a set. The countable cardinals consist of 0, 1, 2, ... as well a $|\mathbb{N}|, \omega$, or \aleph_0 . The uncountable cardinals (assuming the axiom of choice) are $\aleph_1, \aleph_2, ..., c$

Theorem 3. Let κ be a cardinal. For any infinite κ there is a structure \mathcal{M} of cardinality κ s.t $\mathcal{M} \equiv (\mathbb{N}, 0, S, +, \cdot)$

Proof. Let $L' = \{0, S, +, \cdot\} \cup \{c_{\alpha} : \alpha \in [\kappa]\}$. $T' = Th(\mathbb{N}, 0, S, +, \cdot) \cup \{c_{\alpha} \neq c_{\beta} : \alpha \neq \beta \in [\kappa]\}$ By the compactness theorem T' is consistent and by the completeness theorem T' has a model. We can apply the same argument as before. Note the the strong form of the completeness theorem remains to be proved.

Back to Completeness

Recall if $T \vDash \Gamma \to \Delta$ then there exists a LK-proof of $T_0, \Gamma \to \delta$, where T_0 is a finite subset of T. In our proof of completeness we assumed the language countable (enumerated all formulas) and obtained a model \mathcal{M} and a σ such that $\mathcal{M} \vDash T, \Gamma[\sigma]$ and $\mathcal{M} \nvDash \Delta[\sigma]$. \mathcal{M} was countable with only countably many terms.

Theorem 4. If T is consistent, or equivalently no LK proof of $T_0 \rightarrow$ exists when T_0 is a finite subset of T, then T is a countable model provided the language is countable.

Theorem 5. If T is consistent in a language of cardinality κ then T has a model of cardinality less then or equal to κ .