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In the previous lecture we proved there is no set I' of sentences in any language which
characterizes equality. That is to say such that if M F I' then M is finite. Conversely recall from
homework 2 problem 12 there does exist a set I' of sentences such that M F I" if and only if M
is infinite. To see this let Gy, : Jx13. .. Elzk(/\Kj x; # xj) and Ly : 3,3 .. Ekay(\/Kj Yy = T)
observe =Ly <= gp4+1. Letting I' = {Gj }r>0 satisfies our requirement. Note that there is no
way to express a compliment of T"

Definition 1. For a structure M the size or cardinality of the structure refers to the size of

M|

Definition 2. The theory of a structure N, Th(N') denotes the set of sentences true in N.
That is Th(N) = {¢ : N E, ¢ a sentence)

Definition 3. A theory T is a set of sentences closed under logical consequence. That is to say
if T E ¢ where ¢ is a sentence then ¢ € T.

Definition 4. Consequence is denoted Cn(T) = {p : T F @, ¢ a sentence}
Definition 5. A theory T is complete if for all sentences ¢ € T or ~p € T.
Theorem 1. There erists a model M such that M Z N and M E Th(N)

Definition 6. If M is isomorphic to N denoted M = N then there exists a bijection h :
|IM| = [N such that h(c™M) = N, For all my,ma,...my € |M|, < my,ma,...my > PM iff
< h(my), h(my), ... h(mg) >€ PN. Also h(fM(my,...mp)) = fN(h(m1),... h(mz)).

Definition 7. M is elementarily equivalent to N denoted M = N if and only if for all
sentences o, ME iff N E ¢

Before proving the theorem stated above, we shall prove a specific case of it.
Theorem 2. There exists a structure with the same propositions as N but not N.

Proof. Let L' be the language with model (N,0,S,+,-,¢). The same as the model N ( with
language L) but with a new constant ¢ added. Let T" := Th(N) U {=(c = 0),~(c = S(0)), ~(c =
S(S(0))),...} I claim T” is consistent. Suppose it were not then T} := Th(N) U {(c # 0), (¢ #
S(0)), (¢ # S(S(0))),...,c # S*(0)} is not consistent for some k. Where S¥(0) is S applied k
times. But N/, = (N, 0,5, +, -,k + 1) where k + 1 = ¢V is a model for T}.

Since 1" is consistent it has a model M’ (by completeness). Take the restriction of M’ to
language L. Call this M. (in original language) We will now establish N'= M. Consider:



h:|N|— M|

h(0) = oM

h(1) = SM(O0™M)

h(k) = SM(SM(...0M))

None the less M’ ¢ range of h. O

Observe that M’ is larger than all of the integers because for any k, Va(x 0Nz £ 1...x #
k—k<ux).

Definition 8. A theory T is categorical iff it has up to isomorphism a unique model. In
practice this is rare

For example Th(N) is not categorical.
Definition 9. A model M of T is a structure satisfying T.

Definition 10. A cardinal is a size of a set. The countable cardinals consist of 0,1,2,... as
well a |N|, w, or Xg. The uncountable cardinals (assuming the axiom of choice) are R1,Ra,... ¢

Theorem 3. Let k be a cardinal. For any infinite k there is a structure M of cardinality k s.t
M= (N,0,5,+,)

Proof. Let L' ={0,5,+, -} U{ca :a € [x]} . T' =Th(N,0,5,+,-) U{cq # cg: a # B € [k]} By
the compactness theorem T is consistent and by the completeness theorem T” has a model. We
can apply the same argument as before. Note the the strong form of the completeness theorem
remains to be proved.

O

Back to Completeness

Recall if T E T' — A then there exists a LK-proof of Ty, I' — §, where Ty is a finite subset of
T. In our proof of completeness we assumed the language countable (enumerated all formulas)
and obtained a model M and a o such that M E T, T'[o] and M ¥ Alog]. M was countable with
only countably many terms.

Theorem 4. If T is consistent, or equivalently no LK proof of Ty — exists when Ty is a finite
subset of T', then T is a countable model provided the language is countable.

Theorem 5. If T is consistent in a language of cardinality k then T has a model of cardinality
less then or equal to k.



