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1 Language with equality

Recall that in the previous class, we proved the Completeness Theorem
(without equality), that is that if T � Γ→∆, then Π,Γ→∆. Also, re-
member the following equality axioms for any terms s, t, u, si, ti:

• → s = s

• s = t→ t = s

• s = t, t = u→ s = u

• s1 = t1, . . . , sk = tk→ f(s1, . . . , sk) = f(t1, . . . , tk) for any formula f
of arity k.

• s1 = t1, . . . , sk = tk→P (s1, . . . , sk) → P (t1, . . . , tk) for any relation
P of arity k.

1.1 The Completeness Theorem with Equality

There are a couple of problems which would occur if we added the equality
axioms to our earlier proof of the Completeness Theorem without modifi-
cation. One is that if S is the set of equality axioms, we would have to
add their closure to the conclusion (∀S,Π,Γ→∆.) To discuss the other
problem, first recall that in the proof of the Completeness Theorem, we
considered:

• ∆→Ξ;

• |M| the set of terms; and

• cM, fM, and PM.

Then if we consider equality, we might have s = t in ∆ for distinct terms s
and t. This would define some equality s =M t which would no longer be
true equality. In effect, equality would become a predicate symbol. Thus we
should modify the proof of the Completeness Theorem when we add equality.
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We now describe how to modify the previous proof of the Completeness
Theorem #1 and #3 a, to prove Completeness Theorems #2 and #3 b,
(using our previous numbering system). First, must modify our definition
of active.

Definition 1. A sequent Π,Γ′→∆′ is active provided that:

• (Π ∪ Γ′) ∩∆ = ∅

• There is no equality axiom E→E′ such that E ⊂ Π,Γ′ and E′ ⊂ ∆′.

As an example of the latter, for a sequent to be active, if

s1 = t1, . . . , sk = tk, P (s) ∈ Γ′,

then P (t) /∈ ∆′.
Additionally, there is a new case (g), in particular: If A is s = t, for each
active sequent Π,Γ′→∆′, then

Π,Γ′→∆′, s = t s = t,Π,Γ′→∆′

Π,Γ′→∆′

Next, we must modify the end of our proof. As before, if the process stops
in finitely many steps, we have (finite) proof, since we have cuts. Otherwise,
again find an infinite branch and ∆ and Ξ as before which satisfy the same
properties plus the additional extra property that: For all formulas s = t,
either s = t ∈ ∆ or s = t ∈ Ξ.

Fix ∆ and Ξ. Define a relation s ∼ t if and only if s = t is in ∆. In fact,
this is an equivalence relation.

Theorem 1. For all s, s = s is in ∆.

Proof. We have the equality axiom → s = s, so s = s is not in Ξ or our
sequent is inactive. Thus s = s is in ∆.

Theorem 2. s ∼ t if and only if t ∼ s.

Proof. Similarly, we can’t have one of s = t and t = s in each of ∆ and Ξ,
since we have the axioms s = t→ t = s and t = s→ s = t.

Theorem 3. If s ∼ t and t ∼ u then s ∼ u.

Proof. s = t, t = u, and s = u are each in ∆ or Ξ. For the theorem to fail,
s = t and t = u would both be in ∆, but s = u would be in Ξ, but again
this would contradict the fact that we have an active sequent.
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We will want another similar theorem:

Theorem 4. If s1 ∼ t1 . . . sk ∼ tk, then f(s) = f(t).

Proof. Similarly, the theorem fails if si = ti is in ∆ for all i, but f(s) = f(t)
is in Ξ and hence not in ∆, but again this would contradict the fact that we
have an active sequent.

Definition 2. [s] = {t : s ∼ t}

Define the following:

• |M| = {[s] : s appears as a term in ∆,Ξ}.

• cM = [c]

• fM([s1], . . . , [sk]) = [f(s1, . . . , sk)]. (Note that this is well defined by
the previous theorem.)

• = as true equality

• 〈[s1], . . . , [sk]〉 ∈ PM if and only if there exists t1, . . . , tk such that
ti ∼ si for all i and P (t1, . . . , tk) ∈ ∆.

(Note that the last requirement is necessarily complicated. If we have s = t
and P (t) in ∆, then we want to have PM([t]) or PM([s]).) Note the following
trivial theorem:

Theorem 5. If si ∼ ti for all i and PM([s1], . . . , [sk]), then PM([t1], . . . , [tk])

Also,

Theorem 6. If φ is an atomic formula in Ξ and φ has the form P (s1, . . . , sk)
then M 2 PM([s1], . . . , [sk]). If φ has the form s = t then [s] 6= [t].

Proof. For s = t, s = t /∈ ∆ so [s] 6= [t]. If PM([s1], . . . , [sk]) then there
exists ti, ti ∼ si such that P (t1, . . . , tk) ∈ ∆. Then ti = si is in ∆ for all i,
P (t1, . . . tk) ∈ ∆, but P (s1, . . . , sk) ∈ Ξ, a contradiction.

Claim 1. Let σ : a → [a] for any free variable a, then for all Φ ∈ ∆,
M � φ[σ]. For all φ ∈ Ξ, M 2 φ[σ].

Proof. The proof is as before with a modified Ξ. Note that we have it for
atomic formulas as before and the other cases are the same proof. It requires
the lemma that t[σ] = [t].

3



Recall the definition for t[σ], where a[σ] = σ(a), c[σ] = cM, and

f(s1, . . . , sk)[σ] = fM(s1[σ], . . . , sk[σ]).

Note: Before if we were working with quantifiers, we always had infinite
models by our construction. Here our model may be finite because of our
equivalence relation.

1.2 The Compactness Theorem

As a corollary we have the compactness theorem.

Corollary 1 (The Compactness Theorem v.1). Let Γ be a set of sentences.
Then Γ is satisfiable if and only if each finite subset of Γ is satisfiable.

Proof. Recall that Γ is satisfiable if and only if there exists a structure M
such thatM � Γ. The proof in the forward direction is obvious, so we prove
the remainder. Suppose Γ is not satisfiable. Then

Γ � → .

(If you prefer, we could use Γ � ⊥.) So there exists a finite Γ0 ⊂ Γ such
that Γ0→ has a proof. By the Soundness Theorem, there is no modelM
satisfying Γ0 so Γ0 is unsatisfiable.

Corollary 2 (The Compactness Theorem v.2). Let Γ be a set of sentences.
Then Γ � φ if and only if there exists a finite Γ0 ⊂ Γ such that Γ0 � φ.

Definition 3. A structure M is finite if |M| is finite.

An application of the previous theorems is the following:

Corollary 3. There is no set Γ of sentences such that Γ is true in precisely
the finite structures.

Proof. By contradiction. Let L be a language of Γ and

L′ = L ∪ {c1, . . . , ci, . . . i ∈ N},

where the ci are new constant symbols. Form Γ′ = Γ ∪ {ci 6= cj}i<j .
Then Γ′ is consistent (satisfiable) since each finite Γ′

0 ⊂ Γ′ is satisfiable.
So Γ′ has a modelM � Γ′. Then restrictM to the language L and we must
have that M � Γ.
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