Math 260A - Mathematical Logic - Scribe Notes
 UCSD - Winter Quarter 2012
 Instructor: Sam Buss

Notes by: Tomoya Sato
Friday, February 17, 2012

The Completeness Theorem for LK

Last time, a procedure to construct an LK-proof of $\Pi, \Gamma \rightarrow \Delta$ was given. This time, we show that the procedure will halt after finitely many steps if $T \vDash \Gamma \rightarrow \Delta$.

WTS

Suppose that the backward process goes on forever and we get an infinite tree. Our goal is to build a structure \mathcal{M} such that $\mathcal{M} \vDash T$ and $\Gamma \rightarrow \Delta$ is not valid in \mathcal{M}, i.e., there is an object assignment σ such that

$$
\begin{array}{ll}
\mathcal{M} \vDash \gamma[\sigma] \quad \forall \gamma \in \Gamma, \\
\mathcal{M} \not \vDash \delta[\sigma] & \forall \delta \in \Delta .
\end{array}
$$

Structure \mathcal{M}

Choose an infinite branch in the infinite tree. Let Λ be a set of formulas that appear in some antecedent along the infinite path, and Ξ a set of formulas that appear in some succedent along the infinite path.
\mathcal{M} is defined as follows:

- $|\mathcal{M}|:=\{\tilde{t}: t$ is a term (that includes only free variables) that appears in $\Lambda, \Xi\}$;
- $\left\langle\tilde{t_{1}}, \ldots, \tilde{k_{k}}\right\rangle \in P^{\mathcal{M}} \stackrel{\text { def }}{\Longleftrightarrow} P\left(t_{1}, \ldots, t_{k}\right) \in \Lambda \stackrel{\text { alt }}{\Longleftrightarrow} P\left(t_{1}, \ldots, t_{k}\right) \notin \Xi ;$
- $c^{\mathcal{M}}:=\tilde{c}$
- $f^{\mathcal{M}}\left(\tilde{t_{1}}, \ldots, \tilde{t_{k}}\right)=f\left(\widetilde{t_{1}, \ldots, t_{k}}\right)$. (\widetilde... not so beautiful...)

Our proof idea is that Λ defines truth in \mathcal{M}, while Ξ defines falsity in \mathcal{M}.

Properties of Λ

1. If $\neg A \in \Lambda$, then $A \in \Xi$;
2. If $A \wedge B \in \Lambda$, then $A \in \Lambda$ and $B \in \Lambda$;
3. If $A \vee B \in \Lambda$, then $A \in \Lambda$ or $B \in \Lambda$;
4. If $A \rightarrow B \in \Lambda$, then $A \in \Xi$ or $B \in \Lambda$;
5. If $\forall x A(x) \in \Lambda$, then for all terms $t, A(t) \in \Lambda$;
6. If $\exists x A(x) \in \Lambda$, then for some free variable $b, A(b) \in \Lambda$;

For example,

$$
\xlongequal{B \rightarrow C, \Gamma^{\prime} \rightarrow \Delta^{\prime}, B \quad C, B \rightarrow C, \Gamma^{\prime} \rightarrow \Delta^{\prime}} ⿻ 日 B \rightarrow C, \Gamma^{\prime} \rightarrow \Delta^{\prime}
$$

exemplifies 4 above, and

$$
\xlongequal[\exists x B(x), \Gamma^{\prime} \rightarrow \Delta^{\prime}]{B(c), \exists x B(x), \Gamma^{\prime} \rightarrow \Delta^{\prime}}
$$

exemplifies 6 .

Properties of Ξ

1. If $\neg A \in \Xi$, then $A \in \Lambda$;
2. If $A \wedge B \in \Xi$, then $A \in \Xi$ or $B \in \Xi$;
3. If $A \vee B \in \Xi$, then $A \in \Xi$ and $B \in \Xi$;
4. If $A \rightarrow B \in \Xi$, then $A \in \Lambda$ and $B \in \Xi$;
5. If $\forall x A(x) \in \Xi$, then for some $b, A(b) \in \Xi$;
6. If $\exists x A(x) \in \Xi$, then for all $t, A(t) \in \Xi$.

Main Claim

Lemma Let id be an object assignment such that for all $c, \operatorname{id}(c):=\tilde{c}$. Then, for all formulas A,
(a) If $A \in \Lambda, \mathcal{M} \vDash A[$ id $]$;
(b) If $A \in \Xi, \mathcal{M} \not \models A[i d]$.

Since $T, \Gamma \subseteq \Lambda$ and $\Delta \subseteq \Xi$, this suffices to prove the completeness theorem.
We prove the Lemma by induction of the complexity of A. But before that...

Sublemma For all $t, \operatorname{id}(t)=\tilde{t}$.
(Base Case): If t is a free variable $b, \operatorname{id}(b)=\tilde{b}$. If t is a constant symbol c, $\operatorname{id}(c)=c^{\mathcal{M}}=\tilde{c}$.
(Induction Step): If t is $f\left(t_{1}, \ldots, t_{k}\right)$,
$\operatorname{id}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=f^{\mathcal{M}}\left(\operatorname{id}\left(t_{1}\right), \ldots, \operatorname{id}\left(t_{k}\right)\right)=f^{\mathcal{M}}\left(\tilde{t_{1}}, \ldots, \tilde{t_{k}}\right)=f\left(\widetilde{t_{1}, \ldots, t_{k}}\right)$.

Proof of the Lemma

(Base Case): If A is atomic, A is $P\left(t_{1}, \ldots, t_{k}\right)$.

$$
\begin{aligned}
\mathcal{M} \vDash A[\mathrm{id}] & \stackrel{\text { iff }}{\rightleftarrows} \mathcal{M} \vDash P\left(t_{1}, \ldots, t_{k}\right)[\mathrm{id}] \\
& \stackrel{\text { if }}{\Longrightarrow} \\
& \left\langle\operatorname{id}\left(t_{1}\right), \ldots, \mathrm{id}\left(t_{1}\right)\right\rangle \in P^{\mathcal{M}} \\
& \stackrel{\text { iff }}{\Longrightarrow}\left\langle\tilde{t_{1}}, \ldots, \tilde{t_{1}}\right\rangle \in P^{\mathcal{M}} \\
& \stackrel{\Longleftrightarrow}{\rightleftarrows} P\left(t_{1}, \ldots, t_{k}\right) \in \Lambda
\end{aligned}
$$

If $P\left(t_{1}, \ldots, t_{k}\right) \in \Xi$, then $P\left(t_{1}, \ldots, t_{k}\right) \notin \Lambda$. So, $\mathcal{M} \not \not \neq A[i d]$.
(Induction Step):
(a) A is $\neg B$: If $A \in \Lambda$, then $B \in \Xi$. By induction hypothesis, $\mathcal{M} \not \vDash B[\mathrm{id}]$. So, $\mathcal{M} \vDash A[i d]$. The similar goes for the case where $A \in \Xi$.
(b) A is $B \wedge C$: If $A \in \Lambda$, then $B \in \Lambda$ and $C \in \Lambda$. So, by induction hypothesis, $\mathcal{M} \vDash B[\mathrm{id}]$ and $\mathcal{M} \vDash C[i d]$. Thus, $\mathcal{M} \vDash A[\mathrm{id}]$.
If $A \in \Xi$, then $B \in \Xi$ or $C \in \Xi$. So, $\mathcal{M} \not \vDash B[i d]$ or $\mathcal{M} \not \vDash C[i d]$. Thus, $\mathcal{M} \not \models A[i d]$.
(c) Similar arguments go for \vee and \rightarrow.
(d) A is $\forall B(x)$: If $A \in \Lambda$, the for all terms $t, B(t) \in \Lambda$, i.e., $\mathcal{M} \vDash B(t)$ [id]. For any $m \in|\mathcal{M}|, m$ is \tilde{t} for some t. So, for any $m \in|\mathcal{M}|, \mathcal{M} \vDash$ $B(x)\left[\mathrm{id}_{x \mapsto m}\right]$. Thus, $\mathcal{M} \vDash A(x)[\mathrm{id}]$.
If $A \in \Xi$, then for some variable $b, B(b) \in \Xi$. So, by induction hypothesis, $\mathcal{M} \not \vDash B(b)[i d]$. Thus, $\mathcal{M} \not \vDash A(x)$ [id].
(e) The similar goes for the case in which A is $\exists B(x)$.

