
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Spring Quarter 2012

Instructor: Sam Buss

Notes by: Thomas Barrett
April 23, 2012

1 The Kleene T Predicate

We have already defined InitM (x) and NextM (w), where

w = 〈state, 〈symbols to the right〉, 〈symbols to the left〉〉 .

And furthermore, we have defined the predicate CompM (x, v). Recall that

CompM (x, v) ⇔ v is a sequence 〈v0, . . . , vl−1〉,
where v0 = InitM (x),
vi+1 = NextM (vi),
vl−1 = halting configuration

We now define the Kleene T predicate. This predicate says something
like CompM (x, v), but without fixing the Turing machine M . T (e, x, w)
means “w codes a complete computation of the Turing machine M with
Gödel number pMq = e on input x.” We claim that this is primitive recur-
sive. (Note that the reason why this might be dubious is that pMq might
not be primitive recursive.)

One way to prove this would be to create a new Next function which
takes in pMq and x and gives the next configuration.

We show that T is primitive recursive another way. Define

f(e, x) = output(µw T (e, x, w)) ,

where

output(w) =
{

value output by TM in configuration w if it’s in state qH
0 otherwise

and µw . . . means “the least w such that . . . ”. Notice that the output
function is primitive recursive.

Theorem 1. For any partial recursive function g(x) there is an e ∈ N such
that ∀x ∈ N, g(x) = f(e, x) and g(x) = output(µw T (e, x, w)).

1

Proof. Let g be computed by some Turing machine M . Let e = pMq. Now
the result follows from applying the appropriate definitions.

Now since the output function is primitive recursive, µ is primitive recur-
sive, and g is primitive recursive, we have the desired result: T is primitive
recursive as well.

2 Some Remarks on Unbounded Minimization

Let h2(x~y) = (µz)(R(z, ~y)) :=
{

least y s.t. R(z, y) if it exists
undefined otherwise

. We define

an algorithm for (partially) computing h2(~y):

Input ~y.
Loop: z = 0, 1, 2, . . .

Evaluate R(z, ~y).
If accepts, then output z

End loop.

This algorithm proves the following theorem.

Theorem 2. If R(z, y) is recursive, then h2(~y) is partial recursive.

Now we present another kind of unbounded minimization. Let h3 be a
partial recursive function. Then define h4(y) = (µz)(h3(z, ~y) = 0). Here’s
an algorithm for h4:

Take input y.
Loop z = 0, 1, 2, 3, . . .

Evaluate h3(z, ~y).
If this halts and outputs 0, then output z.

End loop.

So we have:

h4(y) = (µz)(h3(z~y) = 0)

:=
{
z s.t. h3(z, ~y) = 0 and ∀z′ < z, h3(z′, ~y) ↓6= 0 if there is such a z
undefined otherwise

And we have the following theorem and corollary.

Theorem 3. h4 is partial recursive.

2

Corollary 1. For e ∈ N, g(x) = output(µw T (e, x, w)) is partial recursive.

Note that unbounded minimization takes us out of the realm of primitive
recursive.

3 Runtime and Primitive Recursive Runtime

We begin with some definitions.

Definition 1. A Turing machine M has runtime s(n) for s : N → N if for
all x ∈ N (or x ∈ Σ∗), if n = |x| (where |x| is the length of x, or number of
symbols in x) then M(x) runs for ≤ s(n) steps.

Definition 2. Furthermore, if s(n) is primitive recursive then M is said to
have primitive recursive runtime.

To conclude, we prove one little theorem about Turing machines with
primitive recursive runtime.

Theorem 4. If f is a function computed by a Turing machine with primitive
recursive runtime, then f is primitive recursive.

Proof. Let M compute f . Then we know

f(x) = output(µw ≤ Bd(s(|x|)) s.t. T (pMq, x, w)) ,

where Bd(s(|x|)) upper bounds the w’s that code s(|x|) steps of a Turing
machine.

Now note that the Bd function is primitive recursive. So everything on
the right hand side is primitive recursive, and hence f is as well.

3

