
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Spring Quarter 2012

Instructor: Sam Buss

Notes by: Andy Parrish
Friday, April 20, 2012

1 Sequence Coding

Primitive recursive functions can only take a fixed number of inputs. In
order to simulate Turing Machines, we need to be able to be able to manage
sequences of arbitrary length. To do this, we should encode a sequence as a
single number.

Definition Given a sequence a0, . . . , aℓ−1 of ℓ natural numbers, define

⟨a0, . . . , aℓ−1⟩ = pa00 pa11 · · · paℓ−1

ℓ−1 pℓ,

where pi denotes the ith prime, with p0 = 2.

Examples
⟨3, 1⟩ = 23 · 31 · 5 = 120

⟨3, 1, 0⟩ = 23 · 31 · 50 · 7 = 168.

We will also need helper functions when working with sequences:

Len(w) = max{i ≤ w + 2 : pi|w}
Seq(w) ⇐⇒ w ≥ 2 and p2Len(w) - w ⇐⇒ w denotes a valid sequence.

Using results from the previous lecture, both of these are primitive recursive
functions.

Additionally, we will want to extract individual entries from the se-
quence. To do this, we take the Gödel β function:

β(i, w) =

{
0 if ¬Seq(w) or i ≥ Len(w)

max{j < w : pji |w} otherwise,

which is again primitive recursive.
We can decode sequences using these functions. How do we encode them?
Well, the function a 7→ ⟨a⟩ is primitive recursive; the function value is

2a · 3.

1



This gets a sequence started. To add to it, we define the function

w⌢a = (w/pLen(a)) · paLen(w) · pLen(w)+1.

This gives the result of pushing entry a onto the end of the sequence encoded
by w. This defines our function PushRight(w, a) = w⌢a.

It is possible, if trickier, to define the related function PushLeft(w, a),
which pushes new value a onto the beginning of the sequence encoded by w.

PushLeft(w, a) = min

v ≤ w2 · 2a
∣∣∣∣∣∣
Seq(v) and Len(v) = Len(w) + 1,
β(0, v) = a, and
∀i ≤ Len(w), β(i+ 1, v) = β(i, w).

 .

Additional care is needed if ¬Seq(w), which we ignore.
We similarly define functions PopLeft(w) and PopRight(w) which re-

spectively remove the leftmost and rightmost elements of w and return the
resulting sequence. The exact details of the definition are not interesting,
but we show the format.

PopLeft(w) =

{
⟨ ⟩ if Len(w) ≤ 1
min{v ≤ w | . . .} otherwise.

}
.

PopRight is similar.

2 Sequence coding and Turing Machines

Consider a Turing machine M whose tape reads:

. . . a0a1 . . . aℓ−1aℓ . . .

and is currently in state q ∈ Q, with tape head on ak.
We identify the states with integers, and specifically designate some

states, e.g. qH ↔ 0, qY ↔ 1, qN ↔ 2.
Identify the alphabet {0, 1, } with {0, 1, 2}.
We encode the configuration of M by the code

w = ⟨q, ⟨ak, ak+1, . . . , aℓ⟩, ⟨ak−1, ak−2, . . . , a0⟩⟩.

Define a predicate HaltM by

HaltM ⇐⇒ (β(0, w) = qH) ⇐⇒ w codes a halting configuration.

2



Also define a function InitM by

InitM (x) = Gödel number of the initial configuration of M on input x.

There are two conventions here, and each is reasonable — either InitM (x)
is given by ⟨q0, ⟨0, . . . , 0⟩, ⟨⟩⟩, (with x many 0’s), or by ⟨q0, ⟨1, 0, 1, 1, 0⟩, ⟨⟩⟩,
(using the binary representation of x.

Our next goal is to define a function NextM so that NextM (w) is the
configuration reached by M in one step from the configuration given by w.

To construct this, it is helpful to have several functions:

� State(w) = β(0, w) gives the current state.

� FirstSym(w) =

{
β(0, w) if Len(w) ≥ 1

if Len(w) = 0
gives the first entry of a list

� CurSym(w) = FirstSym(β(1, w)) gives the symbol at the location of
the tape head.

The definition of NextM has a large but finite number of cases, depending
on State(w) and CurSym(w).

For example, suppose

δ(q0, σ0) = (σ1, N, q2)

δ(q2, σ1) = (σ2, L, q3)

is a partial definition of the transition function δ.
Then NextM (w) should be

⟨q2,PushLeft(σ1,PopLeft(β(1, w))), β(2, w)⟩

when StateM = q0 and CurSym(w) = σ0, and

⟨q3,PushLeft(FirstSym(β(2, w)),PushLeft(σ2,PopLeft(β(1, w)))),PopLeft(β(2, w))⟩

when StateM = q2 and CurSym(w) = σ1.
The full definition of NextM will take into account for every possible

state-symbol pair, and also handle cases with invalid input.
With these functions defined, we may finally define the predicate CompM ,

which can recognize valid computations.

3



Formally, this is given by

CompM (x, v) ⇐⇒


v = ⟨w0, . . . , wℓ−1⟩
w0 = InitM (x)
wℓ−1 = halting configuration
wi+1 = Next(wi)∀i < ℓ− 1

⇐⇒
Seq(v) ∧ Len(v) ≥ 1 ∧ β(0, v) = InitM (x)∧

(∀i < Len(w)− 1)(β(i+ 1, v) = NextM (β(i, v))∧
HaltM (β(Len(v)− 1, v)))

⇐⇒ v codes a complete valid computation with input x.

4


