Math 260A — Mathematical Logic — Scribe Notes UCSD — Spring Quarter 2012 Instructor: Sam Buss

Notes by: Stephen R. Foster April 13, 2012

1 Alternative Proof of Halting Problem

"Quine" theorem restated: For a partial recursive function $f(x, \vec{w})$, there exists a Turing Machine M such that $M(\vec{w}) = f(\lceil M \rceil, \vec{w})$.

Using this, we can obtain another proof of the Halting Problem.

Suppose some machine M_0 solves the halting problem. We can construct M such that $M(\lceil N \rceil) \downarrow \leftrightarrow N() \uparrow$.

By the "Quine" theorem: There is some M_2 such that $M_2() = M(\lceil M_2 \rceil)$.

Thus $M_2() \downarrow \leftrightarrow M(\lceil M_2 \rceil) \downarrow \leftrightarrow M_2() \uparrow$. This is a contradiction.

2 Second Recursion Theorem / Kleene's Fix Point Theorem

Let f be a (total) recursive function. There exists a Turing Machine M such that $U(\lceil M \rceil, w) = U(f(\lceil M \rceil, w))$ for all $w \in \Sigma^*$. That is, M computes the same partial function as a Turing Machine with Gödel number $f(\lceil M \rceil)$.

(By the way, why do we need to specify "partial"? Consider $f(x) = \lceil M_0 \rceil$, where M_0 is a Turing Machine that loops forever.)

2.1 Notational aside

If Turing Machine M has Gödel number $e = \lceil M \rceil \in \Sigma^*$, we write that $\{e\} = \{\lceil M \rceil\}$ is the partial function computed by M.

The function $\{e\}$ has type $\Sigma^* \to \Sigma^*$.

2.2 The Proof continued

Let g(x, w) be such that $g(\lceil N \rceil, w) = N'(w)$, where $\lceil N' \rceil = f(\lceil N \rceil)$. Or, using the alernative notation: $g(e, w) = \{f(e)\}(w)$.

The algorithm for defining g would simply be: 1) compute f(e), then 2) run U(f(e), w). We know there's some $M_2(w) = g(\lceil M_2 \rceil, w)$. So $U(\lceil M_2 \rceil, w) = M_2(w) = g(\lceil M_2 \rceil, w) = U(f(\lceil M_2 \rceil, w))$. This completes the proof.

3 Rice's Theorem

Let C be a set of partial recursive functions. Let C# be Gödel numbers $\{e: \{e\} \in C\}$. Suppose C# is non-empty and C# is not the set of natural numbers. Then C# is not decidable.

(This generalizes the halting problem by suggesting that any non-trivial property of what a Turing Machine computes is not decidable.)

To prove this, let M_0 be such that $\{\lceil M_0 \rceil\} \in C$ and $\{\lceil M_1 \rceil\} \notin C$. Assume C # is decidable. Let $g(\lceil M \rceil, w)$ be the function that returns $M_0(w)$ if $M \in C$ and returns $M_1(w)$ if $M \notin C$. Since C # is decidable, g is partial recursive.

By the "Quine" theorem: Let $M_2(w) = g(\lceil M_2 \rceil, w)$. If $\lceil M_2 \rceil \in C\#$, then $g(\lceil M \rceil, w) = M(w)$. Thus $M_2(w) = g(\lceil M \rceil, w) = M_1(w)$, and $\lceil M_2 \rceil \in C\#$. This is a contradiction. A similar argument can be used if $\lceil M_2 \rceil \not\in C\#$.