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1 The Halting Problem

Is there a Turing machine such that for any Turing machine M starting with
a blank tape, it can compute whether or not M eventually halts? Is there
a Turing machine such that for any Turing machine M with an input w, it
can compute whether or not M eventually halts?

Definition 1. The Halting Problem is the set H
H :={"M": M started with a blank tape and eventually halts.}
Theorem 1. The Halting Problem H 1is undecidable.
In order to show the theorem, we first show the following.
Definition 2. The M-w Halting Problem is the set H* of pairs ("M ™, w)
H* :={("M",w) : M(w) eventually halts.}
Theorem 2. The M-w Halting Problem H* is undecidable.

Proof. (Proof by contradiction): Assume that N is a Turing machine that
decides H*, i.e.,

Ny ("M ™ w) enters state qy LN M(w){;
N1 ("M ™, w) enters state gy LN M(w)t.
We modify Nj to form another Turing machine Ny such that
Ny(TMOw)t 5 M(w));
No(TM7w)l <L M(w)t.
Finally, let N3 be a Turing machine such that
N3("M7™) = No("M7,"M™).

Then, we can derive a contradiction as follows:



N3("N3) €5 No(TN37, TNy ) <5 Ny(TN3 )t
0

Definition 3. Let Q,R C X*. A many-one reduction from Q to R is a
(total) recursive function f : ¥* — ¥* such that for any w € ¥*,

we R < f(w) € R.
Theorem 3. If R is decidable, then Q is decidable.

Proof. Algorithm for deciding w € @ is the following: Input w. Then,
compute f(w) and check if f(w) € R. If so, go to qy; otherwise, go to
qnN- O

In order to show the Halting Problem H is undecidable, then, it suffices
to show that there is a many-one reduction from the M-w Halting Problem
H* to the Halting Problem H. S defined as follows is the many-one reduction
from H* to H that we want:

S("TM™\w) ="M,
where M’ is a Turing machine such that M’ starts with the black input and
1. M’ writes w on its input tape;
2. then it runs M.

(Notice that M’ has (Jw|+ the number of states in M )-many states.)
Many-one reductions are a special case of Turing reductions, which we
will discuss in later class.

2 The Second Recursion Theorem
Let f be a partial recursive function with (k+1) inputs, X, w1, ..., w; € X*.

Theorem 4. There is a Turing machine such that for all input W, M (W) =
f(CM™ @), ie.,
M@y <L prma)l,

and if so, they give the same result.



Proof. Given f computed by some Turing machine My, form g : "N —
"N’ such that N'(@) computes N("N 7, ). (Notice, we still do not need a
universal Turing machine here.) Suppose that g is computed by some M.
We define h such that h("N 7, @) = f(g("N™),w). We also suppose that h is
computed by some M. Let M3 be the Turing machine with Goédel number
'_Mg—' = g(rMQ—l). Then,

Ms(wW) = My(" M7, W)
h(" M7, )
f(g("M27), @)
= f("M;3", W)

O]

Corollary 1. There is a Turing machine M such that M starts with a blank
tape and eventually outputs "M ™.

Proof. Take f to be such that f(X) = X. O



