
Math 260B — Mathematical Logic — Scribe Notes
UCSD — Spring Quarter 2012

Instructor: Sam Buss

Notes by: Tomoya Sato
April 11, 2012

1 The Halting Problem

Is there a Turing machine such that for any Turing machine M starting with
a blank tape, it can compute whether or not M eventually halts? Is there
a Turing machine such that for any Turing machine M with an input w, it
can compute whether or not M eventually halts?

Definition 1. The Halting Problem is the set H

H := {pMq : M started with a blank tape and eventually halts.}

Theorem 1. The Halting Problem H is undecidable.

In order to show the theorem, we first show the following.

Definition 2. The M -w Halting Problem is the set H∗ of pairs (pMq, w)

H∗ := {(pMq, w) : M(w) eventually halts.}

Theorem 2. The M -w Halting Problem H∗ is undecidable.

Proof. (Proof by contradiction): Assume that N1 is a Turing machine that
decides H∗, i.e.,

N1(pMq, w) enters state qY
iff⇐⇒ M(w)↓ ;

N1(pMq, w) enters state qN
iff⇐⇒ M(w)↑ .

We modify N1 to form another Turing machine N2 such that

N2(pMq, w)↑ iff⇐⇒ M(w)↓ ;

N2(pMq, w)↓ iff⇐⇒ M(w)↑ .

Finally, let N3 be a Turing machine such that

N3(pMq) = N2(pMq, pMq).

Then, we can derive a contradiction as follows:

1

N3(pN3q)↓ iff⇐⇒ N2(pN3q, pN3q))↓ iff⇐⇒ N3(pN3q)↑.

Definition 3. Let Q,R ⊆ Σ∗. A many-one reduction from Q to R is a
(total) recursive function f : Σ∗ → Σ∗ such that for any w ∈ Σ∗,

w ∈ Q ⇐⇒ f(w) ∈ R.

Theorem 3. If R is decidable, then Q is decidable.

Proof. Algorithm for deciding w ∈ Q is the following: Input w. Then,
compute f(w) and check if f(w) ∈ R. If so, go to qY ; otherwise, go to
qN .

In order to show the Halting Problem H is undecidable, then, it suffices
to show that there is a many-one reduction from the M -w Halting Problem
H∗ to the Halting Problem H. S defined as follows is the many-one reduction
from H∗ to H that we want:

S(pMq, w) := pM ′q,

where M ′ is a Turing machine such that M ′ starts with the black input and

1. M ′ writes w on its input tape;

2. then it runs M .

(Notice that M ′ has (|w|+ the number of states in M)-many states.)
Many-one reductions are a special case of Turing reductions, which we

will discuss in later class.

2 The Second Recursion Theorem

Let f be a partial recursive function with (k+1) inputs, X,w1, . . . , wk ∈ Σ∗.

Theorem 4. There is a Turing machine such that for all input ~w, M(~w) =
f(pMq, ~w), i.e.,

M(~w)↓ iff⇐⇒ f(pMq, ~w)↓,

and if so, they give the same result.

2

Proof. Given f computed by some Turing machine M0, form g : pNq 7→
pN ′q such that N ′(~w) computes N(pNq, ~w). (Notice, we still do not need a
universal Turing machine here.) Suppose that g is computed by some M1.
We define h such that h(pNq, ~w) = f(g(pNq), ~w). We also suppose that h is
computed by some M2. Let M3 be the Turing machine with Gödel number
pM3q = g(pM2q). Then,

M3(~w) = M2(pM2q, ~w)
= h(pM2q, ~w)
= f(g(pM2q), ~w)
= f(pM3q, ~w)

Corollary 1. There is a Turing machine M such that M starts with a blank
tape and eventually outputs pMq.

Proof. Take f to be such that f(X) = X.

3

