Math 260A — Mathematical Logic — Scribe Notes
UCSD — Spring Quarter 2012
Instructor: Sam Buss

Notes by: Thomas Barrett
April 9, 2012

1 Theorems on Decidability, Semi-Decidability, and
Enumerability

Recall that last time we were talking about recursive, semi-decidable, and
recursively enumerable relations/functions. Here we prove a number of the-
orems.

Theorem 1. If R is recursive (i.e. decidable or computable), then R is

recursively enumerable (i.e. computably enumerable, or equivalently, semi-
decidable).

Proof. 1f a Turing machine M decides R, then M semi-decides R. And since
R is semi-decidable if and only if R is recursively enumerable (by a theorem
last time), we conclude that R is recursively enumerable, as desired. O]

We now need a couple of definitions:

Definition 1. Let R C ¥*, then the complement of R, denoted R, is defined
by R:=¥* — R.

Definition 2. R is corecursively enumerable if and only if R is recursively
enumerable.

The following theorem shows the relationship between recursive/corecursive
enumerability and recursivity.

Theorem 2. R is recursive if and only if R is recursively enumerable and
corecursively enumerable.

Proof. (=) Assume R is recursive. By Theorem 1, R is recursively enumer-
able. It is clear that if R is recursive, then R is recursive as well. For since
R is recursive, there is a Turing machine M which decides R. Modify M by
exchanging the states gy and ¢y. Then this new Turing machine decides R.

So R is recursive implies that R is recursive, which implies that R is
recursively enumerable (by Theorem 1 again), which implies that R is core-
cursively enumerable.

(<) Assume M; semi-decides R and My semi-decides R. We give the
following algorithm to decide R.
Input w € ¥*. For each i =1,2,3,... we do the following:

1. Run M;(w) for i steps, if it enters its gy state, then enter the ‘accept’
state (gy for our new machine).

2. Run My (w) for i steps, if it enters its gy state, then enter the ‘reject’
state (¢n for our new machine).

For a given w, either 1 or 2 will eventually happen since M; and My
semi-decide R and R, respectively. So our new machine will always halt
with the correct answer, and hence it decides R. O

We will prove most of the following theorem, but part of it will be left
for HW.

Theorem 3. The following are equivalent:
1. R is semi-decidable.
R is recursively enumerable.

R is the range of a partial recursive function.

e e

R is the domain of a partial recursive function.
5. R =10 or R is the range of a recursive function.

Note that) is decidable and consequently semi-decidable. And more gener-
ally, any finite set is recursive.

Proof. We proved last time that 1) < 2).

We show that 1) = 4). Assume that M semi-decides R. We can assume
without loss of generality that if w € R, then M (w) enters ¢y and if w ¢ R,
then M (w) diverges (i.e. it never halts).

Modify M to form M’ in the following way. If M enters qy, then M’
instead prints a 0 on the tape and enters qy. So M’ computes a partial
recursive function whose domain is

{w[M(w) 1},

as desired.

We show that 1) = 3). Assume that M is as above, that is, M semi-
decides R. Form M"” such that if M (w) enters qy, M" writes w as its output
and enters qg. It is fairly straightforward to see how this might be done.
For example, one could have M” make a copy of w on the tape, then run
M on one of the two copies of w. If M enters state gy, then return to the
left-most entry on the tape of the other copy of w.

We show that 1) = 5). Assume again that M is as above, and further-
more that R # (). Let wy € R. We give the following algorithm for deciding
R:

Define the function f by:

w if M(w) enters gy in < i steps
wo otherwise

i) ={

It is easy to see that f is recursive, since we can just run M on w for i steps.
And range(f) = R. Clearly range(f) C R, and R C range(f) since for all
w € R there is some i € N such that M (w) accepts in less than or equal to
1 steps.

The rest of the theorem has been left for HW. O]

One remark deserves to be made about our proof of 1) = 5). It assumes
that || > 2. But there are a couple of ways that we can use a single member
of ¥* to encode a pair of members in >*.

For example, for 7,7 € N, we can give a single k¥ € N which encodes both
¢ and j:

i\j | 1 2 3 4
1 |0 2 5 9..
2 |1 4 8

3 |3 7.

4 16..

So we can combine the two inputs that f needs above into simply 1
input. This means that we do not need the assumption that || > 2.

2 The Universal Turing Machine

Very roughly speaking, the Universal Turing Machine is a Turing machine
that can do anything that any other Turing machine can do.

We can code Turing machines as strings. Fix ¥ and assume that {0,1} C
3. Encode a Turing machine M by a string in ¥X*. Call this the Godel
number of M, in other words "M ™.

One way to do this is as follows. Given a fixed M, assume without loss
of generality that I' = X for M. At first we use

Y =YUQU{R,L,N}U{S,,}.

The Godel number of M is a description of the transition function ¢ for
M. Let §(q,0) = (¢/,m,q"), where m € {R,L,N}, q,¢' € Q, and 0,0’ € ¥.
We can encode this as follows:

Slal.Jol o[. [m[.[a]$]

Now we concatenate entries like this for all of the values of § (since J is
finite, this will work).

And we can now reduce the ¥ that we were working with. Encode ¢, ¢’
in binary notation. Also encode R, L, N as binary strings. For example, R
as 00, L as 11, N as 01. So our tape

(Slal.Jol o[. [m[.[d]$]

becomes a string of 0’s, 1’s, commas, and $’s. Now encode 0 as 00, 1 as 11,
$ as 01, and ‘comma’ as 10 (for example). Then we have a string of symbols
from ¥ which completely encode our Turing machine M.

We now conclude with a more formal definition of the Universal Turing
Machine.

Definition 3. The Universal Turing Machine, U, is a Turing machine with
two inputs defined as follows:

UM, w) = M(w) .

For "M ™ the Gédel number of a Turing machine M, and w € ¥*. If M(w)
halts in state gy or gy, then so does U. And if M(w) halts in g5 and outputs
v, so does U. And if M (w) T, then so does U("M ™, w).

