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1 Theorems on Decidability, Semi-Decidability, and
Enumerability

Recall that last time we were talking about recursive, semi-decidable, and
recursively enumerable relations/functions. Here we prove a number of the-
orems.

Theorem 1. If R is recursive (i.e. decidable or computable), then R is
recursively enumerable (i.e. computably enumerable, or equivalently, semi-
decidable).

Proof. If a Turing machine M decides R, then M semi-decides R. And since
R is semi-decidable if and only if R is recursively enumerable (by a theorem
last time), we conclude that R is recursively enumerable, as desired.

We now need a couple of definitions:

Definition 1. Let R ⊂ Σ∗, then the complement of R, denoted R̄, is defined
by R̄ := Σ∗ −R.

Definition 2. R is corecursively enumerable if and only if R̄ is recursively
enumerable.

The following theorem shows the relationship between recursive/corecursive
enumerability and recursivity.

Theorem 2. R is recursive if and only if R is recursively enumerable and
corecursively enumerable.

Proof. (⇒) Assume R is recursive. By Theorem 1, R is recursively enumer-
able. It is clear that if R is recursive, then R̄ is recursive as well. For since
R is recursive, there is a Turing machine M which decides R. Modify M by
exchanging the states qY and qN . Then this new Turing machine decides R̄.

So R is recursive implies that R̄ is recursive, which implies that R̄ is
recursively enumerable (by Theorem 1 again), which implies that R is core-
cursively enumerable.
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(⇐) Assume M1 semi-decides R and M2 semi-decides R̄. We give the
following algorithm to decide R.

Input w ∈ Σ∗. For each i = 1, 2, 3, . . . we do the following:

1. Run M1(w) for i steps, if it enters its qY state, then enter the ‘accept’
state (qY for our new machine).

2. Run M2(w) for i steps, if it enters its qY state, then enter the ‘reject’
state (qN for our new machine).

For a given w, either 1 or 2 will eventually happen since M1 and M2

semi-decide R and R̄, respectively. So our new machine will always halt
with the correct answer, and hence it decides R.

We will prove most of the following theorem, but part of it will be left
for HW.

Theorem 3. The following are equivalent:

1. R is semi-decidable.

2. R is recursively enumerable.

3. R is the range of a partial recursive function.

4. R is the domain of a partial recursive function.

5. R = ∅ or R is the range of a recursive function.

Note that ∅ is decidable and consequently semi-decidable. And more gener-
ally, any finite set is recursive.

Proof. We proved last time that 1) ⇔ 2).

We show that 1)⇒ 4). Assume that M semi-decides R. We can assume
without loss of generality that if w ∈ R, then M(w) enters qY and if w /∈ R,
then M(w) diverges (i.e. it never halts).

Modify M to form M ′ in the following way. If M enters qY , then M ′

instead prints a 0 on the tape and enters qH . So M ′ computes a partial
recursive function whose domain is

{w|M(w) ↓} ,

as desired.
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We show that 1) ⇒ 3). Assume that M is as above, that is, M semi-
decides R. Form M ′′ such that if M(w) enters qY , M ′′ writes w as its output
and enters qH . It is fairly straightforward to see how this might be done.
For example, one could have M ′′ make a copy of w on the tape, then run
M on one of the two copies of w. If M enters state qY , then return to the
left-most entry on the tape of the other copy of w.

We show that 1) ⇒ 5). Assume again that M is as above, and further-
more that R 6= ∅. Let w0 ∈ R. We give the following algorithm for deciding
R:

Define the function f by:

f(w, i) =
{
w if M(w) enters qY in ≤ i steps
w0 otherwise

.

It is easy to see that f is recursive, since we can just run M on w for i steps.
And range(f) = R. Clearly range(f) ⊂ R, and R ⊂ range(f) since for all
w ∈ R there is some i ∈ N such that M(w) accepts in less than or equal to
i steps.

The rest of the theorem has been left for HW.

One remark deserves to be made about our proof of 1)⇒ 5). It assumes
that |Σ| ≥ 2. But there are a couple of ways that we can use a single member
of Σ∗ to encode a pair of members in Σ∗.

For example, for i, j ∈ N, we can give a single k ∈ N which encodes both
i and j:

i\j 1 2 3 4 . . .
1 0 2 5 9 . . .
2 1 4 8 . . .
3 3 7 . . .
4 6 . . .

So we can combine the two inputs that f needs above into simply 1
input. This means that we do not need the assumption that |Σ| ≥ 2.

2 The Universal Turing Machine

Very roughly speaking, the Universal Turing Machine is a Turing machine
that can do anything that any other Turing machine can do.
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We can code Turing machines as strings. Fix Σ and assume that {0, 1} ⊂
Σ. Encode a Turing machine M by a string in Σ∗. Call this the Gödel
number of M , in other words pMq.

One way to do this is as follows. Given a fixed M , assume without loss
of generality that Γ = Σ for M . At first we use

Σ′ = Σ ∪Q ∪ {R,L,N} ∪ {$, , } .

The Gödel number of M is a description of the transition function δ for
M . Let δ(q, σ) = (σ′,m, q′), where m ∈ {R,L,N}, q, q′ ∈ Q, and σ, σ′ ∈ Σ.
We can encode this as follows:

$ q , σ , σ′ , m , q’ $

Now we concatenate entries like this for all of the values of δ (since δ is
finite, this will work).

And we can now reduce the Σ that we were working with. Encode q, q′

in binary notation. Also encode R,L,N as binary strings. For example, R
as 00, L as 11, N as 01. So our tape

$ q , σ , σ′ , m , q’ $

becomes a string of 0’s, 1’s, commas, and $’s. Now encode 0 as 00, 1 as 11,
$ as 01, and ‘comma’ as 10 (for example). Then we have a string of symbols
from Σ which completely encode our Turing machine M .

We now conclude with a more formal definition of the Universal Turing
Machine.

Definition 3. The Universal Turing Machine, U , is a Turing machine with
two inputs defined as follows:

U(pMq, w) = M(w) .

For pMq the Gödel number of a Turing machine M , and w ∈ Σ∗. If M(w)
halts in state qY or qN , then so does U . And if M(w) halts in qH and outputs
v, so does U . And if M(w) ↑, then so does U(pMq, w).
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