Math 260A — Mathematical Logic — Scribe Notes
UCSD — Winter Quarter 2012
Instructor: Sam Buss

Notes by: James Aisenberg
April 6th

1 “Modern version of the Church-Turing Thesis”
(in scare quotes)

The usual way to state the Church-Turing Thesis is that any precisely de-
scribed algorithmic process can be modelled using a Turing machine. For the
modern generation, who grew up believing computers can implement every
precisely described algorithm, we have a “Modern version of the Church-
Turing Thesis.”

Claim 1. Anything computable by a digital computer can be computed by a
Turing machine.

Features of a digital computer:
e There is no distinction between instructions and data
e There is a finite control that updates with instructions/data
e The data is stored in words
e There are program counters and registers.

At this point there is much hand-waving that a Turing machine could
actually do all this. But surely they can.

2 Computable functions

In what follows we will be dealing with two sort of functions, f : N — N
and f : ¥* — ¥* where ¥ = {0,1}, and taking star of a set indicates
the set of (finite) strings made up of that set. To associate a function, f,
mapping natural numbers to natural numbers with a Turing machine, we
need to specify a convention for encoding natural numbers as strings that
could appear on a tape head of a Turing machine. The two conventions are
unary notation, in which the natural number i is encoded by 0, a string of
¢ many 0’s, and binary notation, in which the natural number 7 is written as

its binary expansion. We adopt the convention that such binary numbers are
written with 1 in the most significant bit. This makes it such that there is
exactly one binary representation for every natural number (i.e. 0010 = 10,
but the LHS is not allowed, and the RHS is allowed).

We are now prepared to say what it means for a Turing machine M to
compute a function f.

Definition 1. We define what it means for a Turing machine M to com-
pute v on input w. Let M be a Turing machine with the following input
conventions:

e M begins with w € ¥* on its tape, with the tape head at the first
symbol of w.

e The rest of the tape consists of the empty symbol.
The Turing machine M has the the following output conventions:

e M halts in the state gy, and when it does, the tape head is at the left
most symbol of some maximal length string v € ¥*.

When these conditions are fulfilled, we say that M compute v on input w.
This is the same as writing M (w) = v. We may write M (w) |= v, or just
M (w) |. If M(w) never halts, then we write M (w) 1.

Furthermore, when M operates on unary representations of numbers,
we require w = 0°, ¥ = {0}, so v = 0*. When M operates on binary
representations of numbers, w € {0,1}* either starting with 1 or the empty
string.

Definition 2. Given a Turing machine M and function f : ¥* — >* if
Yw € ¥*, M(w) 1= f(w) then we say M computes f.

Definition 3. Let f be a function, if there exists a Turing machine M such
that M computes f, then we say that f is computable or recursive.

Definition 4. Let f be a partial function (in other words, a function f
where dom(f) C ¥* and range(f) C ¥*). We say M computes f when

(Vw)(w € dom(f) = M(w) = f(w) and w ¢ dom(f) — M(w) 1)

Definition 5. If f is a partial function, and there exists an M that computes
f, then we say that f is partial recursive or partial computable.

3 Relations

Definition 6. A relation or predicate is a set R C ¥*.

Definition 7. A Turing machine M decides a relation R if M has two
halting states, gy and gy (accepting and rejecting) and for all w € ¥*,
w € R has M(w) halt in ¢y and w ¢ R has M (w) halt in gy. We say that
“M accepts w” and “M rejects w,” respectively.

Definition 8. A relation R is decidable if there exists a Turing machine M
s.t. M decides R.

Definition 9. A Turing machine M semidecides R if (Vw)(w € R iff M accepts w).

Definition 10. A relation R is semidecidable if there exists a Turing ma-
chine M that semidecides R.

Definition 11. A Turing machine M enumerates R C »* when M has
a “pause” state qp, and when M is run on blank input, it periodically
enters the pause state, with the output of M at this point being an element
of R. This gives a sequence wi,ws,... of output values, which may be
finite or infinite, and may contain duplicates. Further impose the condition
that R = {wi,w2,...}. In other words, every element in R eventually gets
enumerated.

Definition 12. R is recursively enumerate (r.e.) or computably enumerable
(c.e) if there is some Turing machine M that enumerates R.

Theorem 1. R is semidecidable iff R is recursively enumerable.

Proof. Suppose R is r.e.; we want to show that R is semidecidable. In other
words, given a Turing machine M; that enumerates R, we want a Turing
machine M that semidecides R.

Algorithm for My

e Input w € ¥*.
e Run M; (on a blank input tape)

e Every time M, goes into gp, and outputs wjy, check whether or not
w = w;. If so, then halt in gy. Otherwise, keep running Mj.

For the other direction: Suppose M3 semidecides R, we want to give an
algorithm for M, that enumerates R.
Algorithm for My

e Loopover:=1,2,3,....

— For each w € ¥, |w| <1,

* Run M3 on input w for up to i steps.

x If M3 enters its gy in this process, then enter gp and output
w.

— End for
e End loop
O

Discussion about the backward direction construction above: We might
think to try and construct an algorithm for My simply be running Mz on
every input. The problem with this is that M3 is not guaranteed to halt
on every input. We avoid this problem by only running M3 for a limited
number of steps. This way, if M3 does halt on an input, we will eventually
discover it, but we are not bound to simply run Ms indefinitely. One way
to visualize what is going on here is to imagine that we are running several
Turing machines running M3 on different inputs in parallel. When one of
them halts, we announce it and enter the pause state. But one of them not
halting does not break the whole process.

Final point: All of these points generalize to k-ary functions and rela-
tions.

