
Math 260A — Mathematical Logic — Scribe Notes
UCSD — Winter Quarter 2012

Instructor: Sam Buss

Notes by: Angela Hicks
April 2nd and 4th

1 Notes on Turing’s paper

We spent most of today’s lecture reading Turing’s paper, “On Computable
Numbers, with an application to the Entscheidungsproblem” written in
1936, (where ‘Entscheidungsproblem’ translates to ‘the decision problem.’)
We made a few isolated comments throughout the class:

• A universal Turing machine take as an input the description of a Turing
machine M and gives as an output the output of M .

• The modern approach is to study Turing machines to simulate a mod-
ern style computer (which is not subject to finite memory) which in
turn allows us to accept that we study all computable functions.

• Could you compute more with something besides a Turing Machine?
Turing machines can simulate randomness and to a certain extent
quantum computing for example.

• Are there instructions a Turing Machine cannot carry out? ‘Draw a
Picture. If it is attractive, go to state q1, otherwise go to state q2.’ or
‘Try a bunch of examples. From them, recognize a theorem and prove
it.’ are both instructions that a Turing machine would have trouble
with, but they are not really algorithms.

• Changes to the Turing machine, instead of a single tape and head,
include one way infinite tape or multiple tapes.

We also noted the Church-Turing Thesis: Any algorithmically com-
putable process can be carried out by a Turing machine. (The converse
is obvious.)

2 Turing machines

Definition 1. An alphabet is a finite set of symbols.

1



Definition 2 (Turing Machine). A Turing machine is specified by:

(Q, q0,Σ,Γ, δ)

• Q is a finite set of states with distinguished states qH (halt), qY (ac-
cept), qN (reject), and qP (pause).

• q0 ∈ Q, the start state

• Σ the input alphabet (with b, the blank state, not in Σ.)

• Γ the working alphabet (Σ ∪ {b} ⊂ Γ)

• δ is the transition function.

δ : (Q\{qH , qY , qN , qP }) × Γ → Γ × {L,R,N} × Q, where the first
output is what is written to the square, the second output gives the
direction of movement, and the third the state.

Definition 3 (Configuration). The configuration includes the state and
tape contents and the tape head position. It consists of:

1. State q

2. Right word contents of the tape, starting under the tape head.

3. Left word contents of the tape, starting left of the tape head.

Example 1. For the below tape head, it might be represented as: q, a3 a4
a5, a2 a1.

Using this convention, the “Next” function is then easily definable.

a1 a2 a3 a4 a5

4

As an example, δ would be of the form δ(q, a3) = 〈b, R\L\N, q′〉.
Next, we’ll give an example of a program that copies. For example, we’d

like to start with the imput

0 1 1 0 b b

4

2



and get the output:

0 1 1 0 b 0 1 1 0 b

4

To do that, we would use the following program:

q0 0 0′ R q1
q0 1 1′ R q3
q1 0 0 R q1
q1 1 1 R q1
q1 b b R q2
q3 0 0 R q1
q3 1 1 R q1
q3 b b R q4
q2 0 0 R q2
q2 1 1 R q2
q2 b 0 L q5
q4 0 0 R q4
q4 1 1 R q4
q4 b 1 L q5
q5 0 0 L q5
q5 1 1 L q5
q5 b b L q5
q5 0′ 0 R q0
q5 1′ 1 R q0
q0 b b N qH

Note that we use q1 and q2 as states to copy a 0, while we use q3 and q4 to
copy a 1. The third through fifth lines, for example, represent working to
copy a 0, scanning to find the first blank space. For this program Σ = {0, 1}
and Γ = {0, 1, 0′, 1′, b}.

Claim 1. WLOG, Γ = Σ ∪ {b}. In other words, we can compute the same
things if we restrict Γ.

Note that if we even have just 0 ∈ Σ, using 0 and b, we can represent 2k

words in standardized k length spaces. To do this, we may need some sort
of stretch function. A stretch function can be made progressively, with for
example the successive tape states:

3



• 0 1 1 0 b

• 0 b 1 1 0 b

• 0 b 1 b 1 0 b

• 0 b 1 b 1 b 0 b

We also discussed O(n) = cn time, where c is a constant that can be made
smaller by making Γ bigger.

There are several generalizations of a standard Turing machine. One is
where the Turing machine has multiple tape heads, as below:

A B C

4

D E F

4

This can be simulated with a single tape (using bread crumbs to mark the
position of both tape heads, as below:

A B′ C D E F′

4

Another modification is to allow two dimensional tape:

A B D G

C E′ H

F I

J

4



This can be simulated using a single tape, where we use v for a carriage
return.

A v B C v D E′ F v G

4

It is less obvious how to simulate moving downward in a two dimensional
tape this way, but it can be done by noticing that if a space is n past a
carriage return, the space directly below it will occur n + 1 past the next
carriage return.

We ended today with a restatement of the Modern Church-Turing Thesis:
A Turing machine can simulate an (idealized) modern computer (where by
idealized, we mean that it has no limits on memory.)

5


