Tuesday section time:

Name: Student ID:

Math 20F - Linear Algebra - Winter 2003

Quiz $\#6\frac{6}{10}$ — March 11

Do not hand in this quiz: it is for self-assessment. Try this quiz without referring to the answers (on back of paper copy) first!

1. Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
.

Find all the eigenvariables of A, and an associated eigenvector for each eigenvector. Check your answers by computing $A\mathbf{x}$ for each eigenvector \mathbf{x} .

ANSWER:

The characteristic polynomial of A is det $(A-\lambda I) = (1-\lambda)(2-\lambda)(4-\lambda)$. Thus, the eigenvariables are $\lambda_1 = 1$, and $\lambda_2 = 2$, and $\lambda_3 = 4$. The associated eigenvectors are: $\mathbf{x}_1 = (1,0,0)^T$, and $\mathbf{x}_2 = (2,1,0)^T$, and $\mathbf{x}_3 = (1,0,3)^T$. (Your answers for the eigenvectors may differ by being multiplied by any non-zero scalar.)

2. Repeat the above problem with $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$.

ANSWER:

det $(A-\lambda I) = (1-\lambda)^2 - 9 = \lambda^2 - 2\lambda - 8$. The eigenvalues are the two roots of this characteristic polynomial, which are $\lambda_1 = 4$ and $\lambda_2 = -2$. The associated eigenvectors are: $\mathbf{x}_1 = (1, 1)^T$ and $\mathbf{x}_2 = (1, -1)^T$. (Again, your answers for the eigenvectors may differ by being multiplied by any non-zero scalar.)