Name:
Tuesday section time:
Student ID:

Math 20F - Linear Algebra - Winter 2003

Quiz \#6 $\frac{6}{10}$ - March 11
Do not hand in this quiz: it is for self-assessment.
Try this quiz without referring to the answers (on back of paper copy) first!

1. Let $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right)$.

Find all the eigenvariables of A, and an associated eigenvector for each eigenvector. Check your answers by computing $A \mathbf{x}$ for each eigenvector \mathbf{x}.

ANSWER:

The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)(4-\lambda)$. Thus, the eigenvariables are $\lambda_{1}=1$, and $\lambda_{2}=2$, and $\lambda_{3}=4$. The associated eigenvectors are: $\mathbf{x}_{1}=(1,0,0)^{T}$, and $\mathbf{x}_{2}=(2,1,0)^{T}$, and $\mathbf{x}_{3}=(1,0,3)^{T}$. (Your answers for the eigenvectors may differ by being multiplied by any non-zero scalar.)
2. Repeat the above problem with $A=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$.

ANSWER:

$\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}-9=\lambda^{2}-2 \lambda-8$. The eigenvalues are the two roots of this characteristic polynomial, which are $\lambda_{1}=4$ and $\lambda_{2}=-2$. The associated eigenvectors are: $\mathbf{x}_{1}=(1,1)^{T}$ and $\mathbf{x}_{2}=(1,-1)^{T}$. (Again, your answers for the eigenvectors may differ by being multiplied by any non-zero scalar.)

