Math 20F - Linear Algebra - Winter 2003
 Quiz \#6 $\frac{1}{2}$ Answers - March 4

1. Consider the following table of data values.

$$
\begin{array}{c|cccc}
x & -1 & 0 & 1 & 2 \\
\hline y & 0 & 4 & 2 & 4
\end{array}
$$

Find the best linear least squares fit to the data. That is, find the linear function $f(x)=c_{0}+c_{1} x$ that best fits the data in the least squares sense.

ANSWER: Let $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}0 \\ 4 \\ 2 \\ 4\end{array}\right)$. We need to solve $A\binom{c_{0}}{c_{1}}=\mathbf{b}$. To do this, we solve $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. Now, $A^{T} A=$ $\left(\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right)$, and $A^{T} \mathbf{b}=\binom{10}{10}$, so we use row operations:

$$
\left(\begin{array}{ll|l}
4 & 2 & 10 \\
2 & 6 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ll|l}
2 & 1 & 5 \\
1 & 3 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ll|l}
1 & 3 & 5 \\
2 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ll|l}
1 & 3 & 5 \\
0 & -5 & -5
\end{array}\right)
$$

Solving by backsubstitution gives $c_{1}=1$ and $c_{0}=2$. So the answer is: $f(x)=2+x$.
2. Let $\mathbf{u}_{1}=(1,1,1)^{T}$ and $\mathbf{u}_{2}=(1,-1,0)^{T}$. Are these vectors orthogonal? Orthonormal? Let $\mathbf{x}=(0,1,1)^{T}$. Find the projection \mathbf{p} of \mathbf{x} onto the subspace $\operatorname{Span}\left(u_{1}, u_{2}\right)$.

ANSWER: \mathbf{u}_{1} and \mathbf{u}_{2} are not unit vectors, so we normalize them by dividing by their magnitudes to get $\mathbf{v}_{1}=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})^{T}$ and $\mathbf{v}_{2}=(1 / \sqrt{2},-1 / \sqrt{2}, 0)^{T}$. Then, $\mathbf{v}_{1} \cdot \mathbf{x}=2 / \sqrt{3}$ and $\mathbf{v}_{2} \cdot \mathbf{x}=-1 / \sqrt{2}$. Hence,

$$
\mathbf{p}=\frac{2}{\sqrt{3}} \mathbf{v}_{1}+\frac{-1}{\sqrt{2}} \mathbf{v}_{2}=(2 / 3,2 / 3,2 / 3)^{T}+(-1 / 2,+1 / 2,0)^{T}=(1 / 6,7 / 6,2 / 3)^{T} .
$$

