Math 20F - Linear Algebra - Winter 2003 Quiz $\#6\frac{1}{2}$ Answers — March 4

1. Consider the following table of data values.

Find the best linear least squares fit to the data. That is, find the linear function $f(x) = c_0 + c_1 x$ that best fits the data in the least squares sense.

ANSWER: Let
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0 \\ 4 \\ 2 \\ 4 \end{pmatrix}$. We need to solve $A \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \mathbf{b}$. To do this, we solve $A^T A \mathbf{x} = A^T \mathbf{b}$. Now, $A^T A = \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$, and $A^T \mathbf{b} = \begin{pmatrix} 10 \\ 10 \end{pmatrix}$, so we use row operations:
 $\begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix} \stackrel{10}{10} \rightarrow \begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 2 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & -5 & -5 \end{pmatrix}$

Solving by backsubstitution gives $c_1 = 1$ and $c_0 = 2$. So the answer is: f(x) = 2 + x.

2. Let $\mathbf{u}_1 = (1, 1, 1)^T$ and $\mathbf{u}_2 = (1, -1, 0)^T$. Are these vectors orthogonal? Orthonormal? Let $\mathbf{x} = (0, 1, 1)^T$. Find the projection \mathbf{p} of \mathbf{x} onto the subspace $Span(u_1, u_2)$.

ANSWER: \mathbf{u}_1 and \mathbf{u}_2 are not unit vectors, so we normalize them by dividing by their magnitudes to get $\mathbf{v}_1 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})^T$ and $\mathbf{v}_2 = (1/\sqrt{2}, -1/\sqrt{2}, 0)^T$. Then, $\mathbf{v}_1 \cdot \mathbf{x} = 2/\sqrt{3}$ and $\mathbf{v}_2 \cdot \mathbf{x} = -1/\sqrt{2}$. Hence,

$$\mathbf{p} = \frac{2}{\sqrt{3}}\mathbf{v}_1 + \frac{-1}{\sqrt{2}}\mathbf{v}_2 = (2/3, 2/3, 2/3)^T + (-1/2, +1/2, 0)^T = (1/6, 7/6, 2/3)^T$$