Name:
Tuesday section time:
Student ID:

Math 20F - Linear Algebra - Winter 2003
 Quiz \#4-February 11

(Do not discuss the quiz with students who haven't taken it yet - until 8:00pm.)

$$
\text { Let } \mathbf{v}_{1}=\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right) \text {, and } \mathbf{v}_{3}=\left(\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right)
$$

Answer the following questions. (As usual, be sure to justifiy your answers).

1. Are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ linearly independent?
2. If not, show explicitly an example of how they are linearly dependent.
3. What is the dimension of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$?

ANSWER: If they are linearly dependent, there is a non-trivial solution to $\left(\begin{array}{rrr}2 & 2 & -1 \\ 1 & 0 & -1 \\ -1 & 2 & 2\end{array}\right) \mathbf{x}=\mathbf{0}$. We search for a non-trivial solution using row reduction:

$$
\left(\begin{array}{rrrr}
2 & 2 & -1 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 2 & 2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
2 & 2 & -1 & 0 \\
-1 & 2 & 2 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus, there are (infinitely) many non-trivial solutions, for example $x_{3}=2$, $x_{2}=-1$, and $x_{1}=2$. Thus, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are not linearly independent. An example of a linear dependence is:

$$
2 \mathbf{v}_{1}+(-1) \mathbf{v}_{2}+2 \mathbf{v}_{3}=\mathbf{0}
$$

The dimension of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is two. We know this because: (a) the dimension cannot be three because of the linear dependence, and (b) the dimension is not equal to one, since the three vectors are not multiples of a single vector.

