Math 20F - Linear Algebra - Winter 2003

Quiz \#3 $\frac{1}{2}$ — February 4
Answers

1. Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x^{2} \geq y\right\}$. Is S a subspace of \mathbb{R}^{2} ?. Prove your answer.

Don't be frightened by the word "Prove". It means the same as "Justify" or "Show your evidence". For this particular problem, showing a counter-example to a closure property is enough.
ANSWER: We show that S is not closed under vector addition. For example, $\binom{1}{1}$ and $\binom{-1}{1}$ are in S. However

$$
\binom{1}{1}+\binom{-1}{1}=\binom{0}{2} \notin S
$$

2. Let $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}_{2}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$. Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a spanning set for \mathbb{R}^{3}. If not, give an example of $\mathrm{a} \mathbf{x} \in \mathbb{R}$ which is not in $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.
ANSWER: We need to determine whether there is a vector $(a b c)^{T}$ so that there is no solution to $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}=(a b c)^{T}$. We set it up a matrix equation

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

and solve with row operations:

$$
\left(\begin{array}{cc|c}
1 & 4 & a \\
2 & 5 & b \\
3 & 6 & c
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
1 & 4 & a \\
0 & -3 & b-2 a \\
0 & -6 & c-3 a
\end{array}\right) \Rightarrow\left(\begin{array}{cc|c}
1 & 4 & a \\
0 & -3 & b-2 a \\
0 & 0 & c-2 b+a
\end{array}\right)
$$

Thus, if $c-2 b+a \neq 0$, there is no solution and $(a b c)^{T}$ is not in $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. For example,

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \notin \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)
$$

Thus, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is not a spanning set for \mathbb{R}.

