Math 20F - Homeworks 9 \& 10 - Selected answers

Samuel R. Buss - Winter 2003 - UC San Diego

Revision 1.0. - March 13, 2003
Section 6.1, Problem 19. We did almost exactly this problem as a theorem proved in class.
Section 6.1, Problem 22. Since $\mathbf{u}_{j}^{T} \mathbf{u}_{i}=\delta_{i, j}$, we have

$$
A \mathbf{u}_{i}=\sum_{j=1}^{n} c_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{u}_{i}=\sum_{j=1}^{n} \delta_{i, j} c_{j} \mathbf{u}_{j}=c_{i} \mathbf{u}_{i}
$$

Hence \mathbf{u}_{i} is an eigenvector for the eigenvalue c_{i}.
Section 6.3, Problem 1(a). We did this as an example in class on Wednesday.
Section 6.3, Problem 1(c). $\operatorname{det}(A-\lambda I)=(2-\lambda)(-4-\lambda)+8=2 \lambda+\lambda^{2}=(2+\lambda)(\lambda)$. The roots of the characteristic polynomial are $\lambda_{1}=1$ and $\lambda_{2}=-2$: these are the eigenvalues of A.
Solving $A \mathbf{x}=0$ for a nontrivial \mathbf{x}, we find that $\mathbf{x}_{1}=(4,1)^{T}$ is a eigenvector corresponding to the eigenvalue $\lambda_{1}=0$.
Solving $(A+2 I) \mathbf{x}=0$, we find that $\mathbf{x}_{2}=(2,1)^{T}$ is an eigenvector corresponding to the eigen value $\lambda_{2}=-2$.
The eigenvalues are distinct, hence \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent. Therefore, A is diagonalizable in the following form:

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right) \cdot\left(\begin{array}{cc}
4 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right) \cdot\left(\begin{array}{cc}
1 / 2 & -1 \\
-1 / 2 & 2
\end{array}\right)
\end{aligned}
$$

Section 6.3, Problem 3(c). The sixth power of A is equal to

$$
A^{6}=\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right)^{6} \cdot\left(\begin{array}{cc}
1 / 2 & -1 \\
-1 / 2 & 2
\end{array}\right)
$$

This can be multiplied out by hand if desired - start by computing the sixth power of the diagonal matrix. This particular case is rather easy since there is only one non-zero eigenvariable. You will find that

$$
A^{6}=\left(\begin{array}{ll}
-64 & 256 \\
-32 & 128
\end{array}\right)
$$

Section 6.3, Problem 4. The idea behind these problems is as follows. First diagonalize the matrix A as $A=S D S^{-1}$. If the eigenvalues are non-negative, the diagonal matrix D has non-negative entries along the diagonal. A matrix E such that $E^{2}=D$ can be formed by letting E be the diagonal matrix whose entries are the square roots of the entries of D. Then, letting $B=S E S^{-1}$, we have $B^{2}=A$.

Section 6.3, Problem 8(a), 9. I neglected to define "defective" in class Wednesday (although I intended to). Therefore, as I promised, this term will not appear on the final exam. An $n \times n$ matrix that does not have n linearly independent eigenvectors is called defective. That is to say, a matrix is diagonalizable if and only if it is not defective.

Section 6.3, Problem 9. If A has one eigenvalue (call it λ_{1}) of multiplicity 3 , then the other eigenvalue (call it λ_{2}) has multiplicity 1 . Now, there is an eigenvector \mathbf{x}_{2} for λ_{2} of course. Furthermore, since $\operatorname{rank}\left(A-\lambda_{1} I\right)$ is equal to 1 , then the null space of $A-\lambda_{1} I$ has dimension 3 ; therefore, there are three linearly independent eigenvectors for λ_{1}. Further, since $\lambda_{1} \neq \lambda_{2}$ (they are unequal, since otherwise, the eigenvalue would have multiplicity four!), \mathbf{x}_{2} is not in the eigenspace of λ_{1}. Thus, the four eigenvectors are linearly independent, so A is diagonalizable and A is not defective.

