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(Preliminary, corrections appreciated!)

These notes are written to supplement sections 2.1 and 2.2 of the textbook
Linear Algebra with Applications by S. Leon for my Math 20F class at UCSD.
In those sections, the definition of determinant is given in terms of the cofactor
expansion along the first row, and then a theorem (Theorem 2.1.1) is stated
that the determinant can also be computed by using the cofactor expansion
along any row or along any column. This fact is true (of course), but its proof
is certainly not obvious. Unfortunately, Leon’s text does not give any proof of
this theorem, and then uses it heavily in subsequent proofs.

Since most of the book is good about giving proofs, or at least proof sketches,
it is galling that such a fundamental result is stated without proof. Accordingly,
the following notes give a sketch of how to prove the theorems in sections 2.1
and 2.2 without depending on any unproved theorems. The intent is that the
reader can read this in conjunction with Leon’s textbook. By following the
sequence of definitions and theorems given below, and by filling the details of
the proofs, the reader can give a complete proof of all the results.

1 Definition of determinants

For our definition of determinants, we express the determinant of a square
matrix A in terms of its cofactor expansion along the first column of the
matrix. This is different than the definition in the textbook by Leon: Leon uses
the cofactor expansion along the first row. It will take some work, but we shall
later see that this is equivalent to our definition.

Formally, we define the determinant as follows:

Definition Let A be a n×n matrix. Then the determinant of A is defined by
the following. If A is 1× 1 so that A = (a1,1), then det(A) = a1,1 . Otherwise,
if n > 1,

det(A) =
n∑

i=1

ai,1Ai,1, (1)

where Ai,j is the (i, j)-cofactor associated with A . In other words, it is the
scalar value

Ai,j = (−1)i+j det(Mi,j),

where Mi,j is the (n − 1) × (n − 1) matrix obtained from A by removing its
i-th row and j -th column. The Mi,j ’s are called the minors of A .

In this note, we assume that all matrices are square. We use the notations
Ai,j and Mi,j to refer to the cofactors and minors of A . When working
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with multiple matrices, we use also use MA
i,j to denote the minor Mi,j of A .

Likewise, for B a matrix, we use Bi,j and MB
i,j to denote the cofactors and

minors of B .

2 How row operations affect determinants

We now present a series of theorems about determinants that should be proved
in the order presented. These theorems are aimed at showing how row and
column operations affect determinants. Indeed, as we shall see, row and column
operations preserve the property of the determinant being non-zero. More
generally, there are simple rules that tell how a determinant when a row or
column operation is applied.

Theorem 1 (Multiplying a row by a scalar.) Let A be a square matrix. Let
B be obtained from A by multiplying the k th row of A by α . Then

det(B) = α · det(A).

Proof: We prove the theorem by induction on n . The base case, where A is
1 × 1 is very simple, since det(B) = b1,1 = αa1,1 = α det(A) .

For the induction step, we assume the theorem holds for all (n− 1)× (n− 1)
matrices and prove it for the n×n matrix A . Recall that the determinant of A
is

det(A) =

n∑

i=1

ai,1Ai,1.

Likewise, the determinant of B is

det(B) =
n∑

i=1

bi,1Bi,1.

Consider the ith term in these two summations. First suppose i = k . Then
bi,1 = αai,1 . Also, since A and B differ in only their k th rows, MB

i,1 = MA
i.1 ,

and thus Ai,1 = Bi,1 . Thus, for i = k , bi,1Bi,1 = αai,1Ai,1 . Second, suppose
i 6= k . Then bi,1 = ai,1 . Also, MB

i,1 is obtained from MA
i,1 by multiplying one

of its rows by α . Therefore, by the induction hypothesis, Bi,1 = αAi,1 . Thus,
we again have bi,1Bi,1 = αai,1Ai,1 .

Since bi,1Bi,1 = αai,1Ai,1 holds for all i , we conclude that det(B) =
α det(A) , and the theorem is proved. 2

Corollary 2 Let A be a square matrix. If any row of A is all zero, then
det(A) = 0 .

Proof: This is an immediate corollary of Theorem 1 using α = 0. 2

Our next theorems use matrices A , B and C . These are always assumed
to be square and have the same dimensions. Furthermore, our proofs will use
the notations Ai,j , Bi,j and Ci,j for the cofactors of A , B and C . We also
use the notations MA

i,j , MB
i,j and MC

i,j for the minors of the three matrices.
Recall that a:,i , b:,i , and c:,i denote the ith rows of the matrices A , B , and
C .
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Theorem 3 Suppose i0 is a fixed number such that 1 ≤ k ≤ n . Also suppose
A , B and C satisfy

c:,k = a:,k + b:,k

and that, for all i 6= k ,
a:,i = b:,i = c:,i.

Then
det(C) = det(A) + det(B).

The hypotheses of the theorem say that A , B , and C are the same, except
that the k row of C is the sum of the corresponding rows of A and B .

Proof: The proof uses induction on n . The base case n = 1 is trivially true.
For the induction step, we assume that the theorem holds for all (n−1)×(n−1)
matrices and prove it for the n × n matrices A, B, C . From the definitions
det(A) , det(B) , and det(C) , it will suffice to prove that

ci,1Ci,1 = ai,1Ai,1 + bi,1Bi,1 (2)

holds for all i = 1, . . . , n . First, suppose i = k . Then ci,1 = ai,1 + bi,1 . Also,
since the matrices differ only in their k th rows, Ci,1 = Ai,1 = Bi,1 . Thus,
equation (2) holds for i = k . Second, suppose i 6= k . Then, ci,1 = ai,1 = bi,1 .
Also, by the induction hypothesis, we have that Ci,1 = Ai,1 + Bi,1 . This is
because MA

i,1 , MB
i,1 , and MC

i,1 in equal all but one of their rows; the remaining
row in MC

i,1 is the sum of the corresponding rows in MA
i,1 and MB

i,1 . So again,
(2) holds. 2

Theorem 4 Suppose that B is obtained from A by swapping two of the rows
of A . Then det(B) = −det(A) .

Proof: We shall first prove the theorem under the assumption that row 1 is
swapped with row k , for k > 1. This will be sufficient to prove the theorem
for swapping any two rows, since swapping rows k and k′ is equivalent to
performing three swaps: first swapping rows 1 and k , then swapping rows 1
and k′ , and finally swapping rows 1 and k .

The proof is by induction on n . The base case n = 1 is completely trivial.
(Or, if you prefer, you may take n = 2 to be the base case, and the theorem is
easily proved using the formula for the determinant of a 2 × 2 matrix.)

The definitions of the determinants of A and B are:

det(A) =

n∑

i=1

ai,1Ai,1 and det(B) =

n∑

i=1

bi,1Bi,1.

First suppose i /∈ {1, k} . In this case, it is clear that MA
i,1 and MB

i,1 are the
same except for two rows being swapped. Therefore, Ai,1 = −Bi,1 . Since also
ai,1 = bi,1 , we have that bi,1Bi,1 = −ai,1Ai,1 .

It remains to consider the i = 1 and i = k terms. We claim that

ak,1Ak,1 = −b1,1B1,1 and a1,1A1,1 = −bk,1Bk,1.
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In fact, once we prove these two identities, the theorem will be proved. By
symmetry, it will suffice to prove the first identity. For this, first note that
ak,1 = b1,1 . Second, note that MB

1,1 is obtained from MA
k,1 by reordering the

rows 1, 2, . . . , k− 1 of MA
k,1 into the order 2, 3, . . . , k− 1, 1. This reordering can

be done by swapping row 1 with row 2, then swapping that row with row 3,
etc., ending with swap with row k − 1. This is a total of k − 2 row swaps. So,
by the induction hypothesis,

det(MB
1,1) = (−1)k−2 det(MA

k,1) = (−1)k det(MA
k,1).

Since Bk,1 = (−1)k+1 det(MB
k,1) and A1,1 = det MA

1,1 , we have established that
Ak,1 = −B1,1 . Thus, ak,1Ak,1 = −b1,1B1,1 .

This completes the proof of the theorem. 2

Corollary 5 If two rows of A are equal, then det(A) = 0 .

Proof: This is an immediate consequence of Theorem 4 since if the two equal
rows are switched, the matrix is unchanged, but the determinant is negated. 2

Corollary 6 If B is obtained from A by adding α times row i to row j (where
i 6= j ), then det(B) = det(A) . (This is a row operation of type 3.)

Proof: Let C be the matrix obtained from A by replacing row j with row i .
Then, by Theorem 5, det(C) = 0. Now, modify C by multiplying row j by α
to obtain D . By Theorem 1, det(D) = α det(C) = 0. Now, by Theorem 3,

det(B) = det(A) + det(D) = det(A) + 0 = det(A).

2

Summary of section: Among other things, we have shown how the
determinant matrix changes under row operations and column operations. For
row operations, this can be summarized as follows:

R1 If two rows are swapped, the determinant of the matrix is negated.
(Theorem 4.)

R2 If one row is multiplied by α , then the determinant is multiplied by α .
(Theorem 1.)

R3 If a multiple of a row is added to another row, the determinant is unchanged.
(Corollary 6.)

R4 If there is a row of all zeros, or if two rows are equal, then the determinant
is zero. (Corollary 2 and Corollary 5.)

For column operations, we have similar facts, which we list here for conve-
nience. To prove them, we must first prove that det(A) = det(AT ), which will
be done later as Theorem 15.

C1 If two columns are swapped, the determinant of the matrix is negated.
(Theorem 22.)
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C2 If one column is multiplied by α , then the determinant is multiplied by α .
(Theorem 19.)

C3 If a multiple of a column is added to another column, the determinant is
unchanged. (Corollary 24.)

C4 If there is a column of all zeros, or if two columns are equal, then the
determinant is zero. (Corollary 20 and Corollary 23.)

3 Diagonal and tridiagonal matrices

The next theorem states that the determinants of upper and lower triangular
matrices are obtained by multiplying the entries on the diagonal of the matrix.

Theorem 7 Let A be an upper triangular matrix (or, a lower triangular
matrix). Then, det(A) is the product of the diagonal elements of A , namely

det(A) =
n∏

i=1

ai,i.

Proof: The proof is by induction on n . For the base case, n = 1, the theorem
is obviously true. Now consider the induction case, n > 1, with A upper
triangular or lower triangular. By the induction hypothesis, MA

1,1 is the product
of all the entries on the diagonal of A except a1,1 . Thus, a1,1A1,1 is the
product of the diagonal entries of A . Therefore, from the formula (1) for the
determinant of A , it will suffice to prove that

ai,1Ai,1 = 0,

for i > 1. Now, if A is upper triangular, then ai,1 = 0 when i > 0. On
the other hand, if A is lower triangular and i > 1, then the first row of MA

i,1

contains all zeros, so Ai,1 = 0 by Theorem 2.
That completes the proof by induction. 2 .

Since a diagonal matrix is both upper triangular and lower triangular,
Theorem 7 applies also to diagonal matrices.

Corollary 8 Let I be an identity matrix. Then det(I) = 1.

4 Determinants of elementary matrices

Theorem 9 Let E be an elementary matrix of type I. Then det(E) = −1 .

Proof: Any such E is obtained from the identity matrix by interchanging
two rows. Thus, det(E) = −1 follows from the facts that the identity has
determinant 1 (Corollary 8) and that swapping two rows negates the determinant
(Theorem 4). 2
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Theorem 10 Let E be an elementary matrix of Type II, with ei,i = α . Then
det(E) = α .

Proof: This is an immediate consequence of Theorem 7. 2

Theorem 11 Let E be an elementary matrix of Type III. Then det(E) = 1 .

Proof: This is immediate from Theorem 7. 2

The next two corollaries will come in handy.

Corollary 12 Let E be an elementary matrix. Then det(ET ) = det(E) .

Corollary 13 Let E be an elementary matrix. Then det(E−1) = 1/det(E) .

As we shall see, Corollary 12 actually holds for any square matrix A , not
just for elementary matrices. And, Corollary 13 holds for any invertible matrix.
Both corollaries are easily proved from the previous three theorems.

The next theorem is an important technical tool. (It will be superseded by
Theorem 17 below.)

Theorem 14 Let A be a square matrix, and let E be an elementary matrix.
Then

det(EA) = det(E) det(A).

Proof: This is an immediate consequence of Theorems 9-11 and Theorems 1,
4, and 6. 2

5 How to compute a determinant efficiently

We know that any matrix can be put in row echelon form by elementary
operations. That is to say, any matrix A can be transformed into a row echelon
form matrix B by elementary row operations. This gives us

B = EkEk−1 · · ·E2E1A

where B is in row echelon form and hence upper triangular. Since B is upper
triangular, we can easily compute its determinant. By Theorem 14,

det(B) = det(Ek) det(Ek−1) · · · det(E2) det(E1) det(A).

Then, by Corollary 13,

det(A) = det(Ek)−1 det(Ek−1)−1 · · · det(E2)−1 det(E1)−1 det(B).

This gives an algorithm for computing the determinant, det(A), of A .
This algorithm is quite efficient; however, for hand calculation it is sometimes

easier to not put A in row echelon form, but instead to only get B upper
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triangular. In this case, the determinant of B is still easily computable; in
addition, the upper triangular B can be obtained using only row operations
of types I and III, each of the elementary matrices Ei has determinant ±1,
and thus det(Ei) = det(Ei)−1 = ±1, so we need only keep track of the sign
changes. This latter algorithm is the one we advocate in class lecture as being
the best one to use.

6 Determinants and invertibility

Theorem 15 A square matrix A is invertible if and only if its reduced row
echelon form is the identity matrix. Furthermore, it is invertible if and only if
its row echelon form does not have any free variables.

Proof: To prove this theorem, note that the conditions are satisfied if and
only if there is no row of zeros in the (reduced) row echelon form of A . This
is equivalent to the condition that the equation Ax = 0 has only the trivial
solution. 2 .

Corollary 16 A is invertible if and only if det(A) 6= 0 .

Proof: By the discussion at the beginning of this section, A has determinant
zero if and only if its reduced row echelon form B has determinant zero. Now,
if A is invertible, B is the identity and hence has determinant equal to one;
i.e., if A is invertible, A has nonzero determinant. Otherwise, B has a row of
all zeros and thus has determinant zero, so A has determinant equal to zero. 2

7 Determinants of products of matrices

A very important fact about matrices is that det(AB) = det(A) · det(B).

Theorem 17 Let A and B be n × n matrices. Then

det(AB) = det(A) det(B).

Proof: First suppose det(B) = 0. Then det(B) is not invertible, so there
is a non-trivial solution to Bx = 0 . This is also a non-trivial solution to
ABx = 0 , so AB is not invertible and thus has determinant 0. Then
det(AB) = 0 = det(A) det(B) in this case.

Second suppose det(A) = 0 and det(B) 6= 0. Since A is not invertible, there
is a non-trivial solution y 6= 0 to Ay = 0. But then, x = B−1(y) is a non-trivial
solution to ABx = 0 . Therefore, AB is not invertible, so det(AB) = 0. So
again, det(AB) = 0 = det(A) det(B) .

Now suppose that det(A) 6= 0. Then the rref form of A is just the identity I .
This means there are elementary matrices Ei so that

A = EkEk−1 · · ·E2E1.

Then,
det(A) = det(Ek) det(Ek−1) · · · det(E2) det(E1).
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by Theorem 14. Using Theorem 14 again gives

det(AB) = det(Ek) det(Ek−1) · · · det(E2) det(E1) det(B) = det(A) det(B).

So the Theorem is proved. 2

8 Determinants of transposes

Theorem 18 det(AT ) = det(A) .

Proof: Express A in row echelon form B , i.e.,

A = EkEk−1 · · ·E2E1B.

So, by Theorem 17,

det(A) = det(Ek) det(Ek−1) · · · det(E2) det(E1) det(B).

The matrix B is upper triangular, so BT is lower triangular. In addition,
BT and B have the same diagonal entries and thus the same determinant. We
also have

AT = BT ET
1 ET

2 · · ·ET
k−1E

T
k .

Using Theorem 17 again,

det(AT ) = det(ET
k ) det(ET

k−1) · · · det(ET
2 ) det(ET

1 ) det(BT ).

The theorem now follows from Corollary 12. 2

9 How column operations effect determinants

Now that we have proved Theorem 18 that determinants are preserved under
taking transposes, we automatically know that all the facts established in
section 2 for row operations also hold for column operations:

Theorem 19 (Multiplying a column by a scalar.) Let A be a square matrix.
Let B be obtained from A by multiplying the k th column of A by α . Then

det(B) = α · det(A).

Recall that ai , bi , and ci denote the ith columns of the matrices A , B ,
and C .

Corollary 20 Let A be a square matrix. If any column of A is all zero, then
det(A) = 0 .

Theorem 21 Suppose j0 is a fixed number such that 1 ≤ j0 ≤ n . Also suppose
A , B and C satisfy

cj0 = aj0 + bj0

and that, for all j 6= j0 ,
aj = bj = cj .

Then
det(C) = det(A) + det(B).

8



The hypotheses of the theorem say that A and B and C are the same, except
that the j0 column of C is the sum of the corresponding columns of A and B .

Theorem 22 Suppose that B is obtained from A by swapping two of the
columns of A . Then det(B) = −det(A) .

Corollary 23 If two columns of A are equal, then det(A) = 0 .

Corollary 24 If B is obtained from A by adding α times column i to column j
(i 6= j ), then det(B) = det(A) .

10 Cofactor expansion along any column or row

We are now in a position to prove that the determinant can be calculated in
terms of its cofactor expansion along any column, or along any row.

The definition of the cofactor expansion along column j is:

n∑

i=1

ai,jAi,j . (3)

The definition of the cofactor expansion along row i is:

n∑

j=1

ai,jAi,j . (4)

Theorem 25 For any j = 1, . . . , n , det(A) is equal to the quantity (3).

Theorem 26 For any i = 1, . . . , n , det(A) is equal to the quantity (4).

Theorem 25 may be proved as follows: Let B be obtained from A by
swapping columns 1 and j . By Theorem 4, det(B) = −det(A). Then, prove
that the terms in the cofactor expansion (3) along column j are equal to the
negations of the terms in the definition of the determinant of B (using the
cofactor expansion along column 1 to compute the determinant of B ); in other
words, prove that ai,jAi,j = −bi,1Bi,1 for i = 1, 2, . . . , n . We leave the details
to the reader.

Theorem 26 is an immediate consequence of Theorem 25 and the fact that
determinants are preserved under transposes (Theorem 18).
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