Start Time:Your name: Answer KeyStop Time:Integrity signature:

Time limit 15 minutes, not counting download and upload. Please add explanation if over 17 minutes.

1. Let \mathcal{R}' be the structure $\mathcal{R}' = (\mathbb{R}, 0, 1, +, \cdot, <)$. Let T be the theory Th R'. Prove T has a non-archimedean model.

A non-archimedean model is a structure \mathcal{A} that has an object $a \in |\mathcal{A}|$ such that (a) a is positive, and (b) a is greater than any fixed integer $n \in \mathbb{N}$. Note that \mathcal{R}' is archimedean since every positive $x \in \mathbb{R}$ is less than or equal to n where $n \in \mathbb{N}$. More precisely, condition (a) means that $\mathcal{A} \models a > 0$; and condition (b) means that, for all $n \in \mathbb{N}$, $\mathcal{A} \models \underline{n} < a$ where \underline{n} is the term $1 + 1 + \cdots + 1$ representing n.

Let T be TU{MEC: NFIN} where c is a
new constant symbol.
Claim: T is finitely satisfiable.
Pfof elaim: Let
$$\Delta$$
 be a finite subset of T.
Then $\Delta \in Tu{Meccensing}$ for some NoFN.
 Δ is satisfied by \mathcal{R} expanded to the
language (0, 1, 1, 1, e, c> by letting the interpretation
of c b N+1. That pures the claim.
Therefore, by Compactness, T has a model Ω .
This model must be non-archimedian, since con
will satisfy $\Omega \neq O \in C^{\Omega}$ and $\Omega \neq M < C^{\Omega}$ for all networks