0. (If not done in lecture.) Prove that the successor function is representable in \(\mathbb{R} \) and in \(\mathbb{Q} \).

1. Prove that \(\mathbb{Q} \) proves \(m + n = n + m \) for all \(n, m \). Similarly for \(m \cdot n = n \cdot m \).

More of the theorem that \(\mathbb{Q} \subset \mathbb{R} \):

\[
\begin{align*}
Q1: & \quad m + n = m + n \\
Q4: & \quad x + 0 = x \\
Q5: & \quad x + SY = S(x + y)
\end{align*}
\]

Next, consider the case of \(\text{zero} \).

\[
S(0) + S(0) = S(S(0))
\]

\[
S(0) + S(0) = S(S(0)) \quad Q5
\]

\[
S(0) + S(0) = S(S(0) + 0) \quad Q5
\]

\[
S(0) + S(0) = S(S(0)) \quad Q5
\]

\[
S(0) + S(0) = S(S(0)) \quad Q5
\]

\[
S(0) + S(0) = S(S(0)) \quad Q5
\]

General case \(m + n = m + n \).

Keep "shuffling" \(S \)'s from \(n \) to the front.

A formal proof would use induction on \(n \).