Computably inseparable c.e. sets

Definition Let \(X \cap Y = \emptyset \), \(X, Y \subseteq \Sigma^* \) (or \(\Sigma \)).

\(X \) and \(Y \) are **computably separable** if there is a decidable \(Z \) s.t. \(X \leq Z \) and \(Z \cap Y = \emptyset \) \((Y \leq \overline{Z}) \)

Theorem There are a pair \(X, Y \) of computably inseparable c.e. sets.

Proof:

\[X = \text{Accepts} = \{ \overline{\langle M, x \rangle} : M(x) \text{ accepts} \} \]

\[Y = \text{Rejects} = \{ \overline{\langle M, x \rangle} : M(x) \text{ rejects} \} \]

Suppose \(Z \) separates \(X, Y \), and \(Z \) is decidable.

Let \(N \) accept (decide) \(Z \)

\(N(\overline{\langle M, x \rangle}) \) accepts then \(M \not\in \text{Rejects} \) so \(M(f) \) does not reject.

\(N(\overline{\langle M, x \rangle}) \) rejects then \(M \not\in \text{Accepts} \) so \(M(f) \) does not accept.
Let \(N' \) decide \(\overline{Z} \).

So \(N'(\overline{M^2}) \) accepts \(\iff M^2(\text{Accept}) = 1 \) does not accept.

Similarly \(N'(\overline{M^2}) \) rejects \(\iff M(\epsilon) \) does not reject.

Form \(DN' \) by Diagonal Theorem

\[
\begin{align*}
DN'(\epsilon) \text{ accepts } & \iff N'(\overline{DN'}) \text{ accepts} \\
& \Rightarrow DN' \text{ does not accept}
\end{align*}
\]

\[
\begin{align*}
DN'(\epsilon) \text{ rejects } & \iff N'(\overline{DN'}) \text{ rejects} \\
& \Rightarrow DN' \text{ does not reject}
\end{align*}
\]

Contradiction: \(N'(\overline{DN'}) \) always accepts or rejects.

So \(DN' \) always accepts or rejects.

\(\text{qed} \)
Diagonal Theorem

If M is an algorithm that takes one input, there is an algorithm D_M s.t.

$D_M(e)$ does the same as $M(T_{D_M})$

Quine-like property
Incompleteness Theorems - Chapter 9

Basic Theorem Let $\mathcal{N} = (\mathbb{N}, 0, S, +, 0)$

$\text{Th } \mathcal{N}$ is undecidable

Corollary $\text{Th } \mathcal{N}$ is not axiomatizable

By Theorem: Any axiomatizable, complete theory is decidable

We'll define a very weak theory Q (Robinson's Theory Q)

Theorem: There is no consistent, decidable theory T such that $T \vdash Q$

(Not even required that $T \subseteq \text{Th } \mathcal{N}$.)

Thus, any semidecidable theory is axiomatizable & conversely.
We define four theories \(\mathbb{R}, \mathbb{Q}, \text{PA, Th} \mathbb{N} \).

\(\mathbb{R}, \mathbb{Q} \) - really weak

\(\text{PA} \) - really strong (axiomatizable) "Recursive arithmetic"

All of these theories can "represent" the decidable sets & the computable functions
Language: $0, 1, +, \cdot$

$Q_1: \forall x \forall y (Sx = Sy \to x = y)$

$Q_2: \forall x (Sx \neq 0)$

$Q_3: \forall x (x \neq 0 \to \exists y (Sy = x))$

$Q_4: \forall x (x + 0 = x)$

$Q_5: \forall x \forall y (x + Sy = S(x + y))$

$Q_6: \forall x (x - 0 = 0)$

$Q_7: \forall x (x - Sy = x \cdot y + x)$

\text{"injection"}

0 \notin \text{range}(S)

\text{range of } S \text{ is } \mathbb{N} \setminus \{0\}

\text{definition of } +

\text{definition of } \cdot

\underline{Notation:} \ Sx \text{ means } S(x)

5 \cdot 5 \cdot 5 \cdot 0 = 5(S(5(5(0))))

\text{denotes } 3
Fact
\[Q \rightarrow \forall x (0 + x = x) \]
\[Q \land \forall x (Sx \neq x) \]

Peano arithmetic (PA)

Definition: Let \(A = A(x) = A(x, \bar{y}) \). The induction axiom for \(A \), denoted \(\text{Ind}_A \)

\[\forall y \left[A(0) \land \forall x (A(x) \rightarrow A(Sx)) \rightarrow \forall x A(x) \right] \]

Example: Let \(A \) be \(x + y = y + x \).

\[\forall y \left[0 + y = y + 0 \land \forall x \left(x + y = y + x \rightarrow Sx + y = y + Sx \right) \rightarrow \forall x (x + y = y + x) \right] \]

Let \(A \) be \(0 + x = x \)
\[0 + 0 = 0 \land \forall x (0 + x = x \rightarrow 0 + Sx = Sx) \rightarrow \forall x (0 + x = x) \]
"Clearly" \(PA = \mathbb{N} \)

Example \(PA \vdash \forall x \ (0 + x = x) \)

Defn \(PA \) is the theory axiomatized by \(Q_1 - Q_7 \) plus \(Ind_A \) for all formulas \(A \) with language \(\mathcal{L}_{PA} = \{ 0, S, +, \cdot \} \)

Proof \(2 \) \(Q \vdash 0 + 0 = 0 \) by \(Q_4 \)

\(S_0 \) \(PA \vdash 0 + 0 = 0 \)

\(3 \) \(Q \vdash 0 + x = x \rightarrow 0 + Sx = Sx \)

Proof \(Q \vdash 0 + Sx = S(0 + x) \) by \(Q_5 \)

\(= Sx \) \(\vdash 0 + x = x \checkmark \)

\(4 \) By \(Ind_A \) when \(A \vdash 0 + x = x \)

\(PA \vdash \forall x \ (0 + x = x) \)
Theory \(R \) - Language \(0, S, +, \cdot \)

\(S \leq t \) abbreviation for \(\exists x (x + S = t) \)

(Not \(\exists x (S \cdot x = t) \) !)

Infinitely many axioms

Notation \(n \) means the term \(S(S(\cdots S(S(0))\cdots)) \)

where \(n \) many \(S \)

\(R_\neq : \quad n \neq m \quad \text{for all } n, m \in \mathbb{N} \)

\(R_+ : \quad n + m = n + m \quad \text{for all } n, m \)

\(R_- : \quad n \cdot m = n \cdot m \) (omitted)

\(R_{\leq 1} : \quad \forall x (x \leq n \lor n \leq x) \quad \text{for all } n \in \mathbb{N} \)

\(R_{\leq 2} : \quad \forall x (x \leq n \Rightarrow x = 0 \lor x = 1 \lor x = 2 \lor \ldots \quad x = n) \quad \text{for all } n \in \mathbb{N} \).
Example

\[2 + 3 = 5 \]
\[5 + 3 = 8 \]
\[3 \cdot 3 = 9 \]
\[2 \cdot 3 = 6 \]
\[SS0 \neq SS50 \]
\[SS0 + SS50 = SS5550 \]
\[SS50 \cdot SS50 = SS55550 \]

\[\forall x \ (x \leq 2 \lor 2 \leq x) \]
\[\forall x \ (x \leq SS0 \lor SS0 \leq x) \]

\[\forall x \ (x \leq SS0 \rightarrow x = 0 \lor x = SS0 \lor x = SS50) \]

\[R \vdash \begin{align*}
2 + 3 &= 5 \\
5 + 2 &= 7
\end{align*} \]
\[R_+ \]
\[2 + 3 = 3 + 2 \]

\[R, Q \vdash \forall x \forall y \ (x + y = y + x) \]
\[PA + \forall x \forall y \ (x + y = y + x) \]
Since \(Q \vdash A \neg x \ (5x \neq x) \)

there is a non-standard model of \(Q \)

\(A \)

s.t. for some member \(a \) of \(\mathbb{N} \)

\(A \vdash \exists a = a \)