Name:

PID:

1. Prove that Accept_1 defined by

$$\text{Accept}_1(M', w) \iff \text{M}'(w) \text{ accepts}$$

is undecidable.

2. Give a many-one reduction from Halt_0 to Halt_1.

Let $w \rightarrow <w, \varepsilon>$. Where $w \in \text{Halt}_0 \rightarrow <w, \varepsilon> \in \text{Halt}_1$.

Both mean $M'(\tilde{M})$ halts

where $w = \tilde{M}$.

Want a function f (many-one reduction):

$$f: M' \rightarrow N'$$

such M' halts if N' accepts.

So f is a many-one reduction from Halt_1 to Accept_1.

N' is formed from M' by replacing any instruction in M that rejects, by an instruction that accepts and halts.

Universal Algorithm:

If either of them accept, then accept.

Assumption: X decides Accept_1.

Input: M', w

Algorithm

Run $X(M', w)$ and $X(\tilde{M}, w)$

where \tilde{M} is same as M

but with "Accept" & "Reject" swapped.