Composition: \(R \circ S \) (from the quizzies)

\[
R = \{ \text{cat, dog} \}, \quad S = \{ \text{purr, grow} \}
\]

\(R \circ S = \{ \text{catpurr, dogpurr, catgrow, doggrow} \} \)

Kleene star: \(R^* = \{ w_1 w_2 \cdots w_k : w_i \in R, t_i \text{ & } k \geq 0 \} \)

Example: \(R^* = \{ \epsilon, \text{cat}, \text{dog}, \text{catcat}, \text{catdog}, \ldots \} \)

Theorem: If \(R \) is c.e., then \(R^* \) is c.e.

(Exercise)
Theorem: Let T be a c.e. set of sentences

Let $T = Cn T = \text{consequences of } T$

$= \{ A : T \vdash A, \ A \text{ is a sentence} \}$

Then if T is complete, T is decidable.

Proof: Since T is c.e., T is c.e.

Suppose T is consistent. So $A \in T \iff \neg A \notin T$

since T is complete.

Input A

Algorithm: If A is not a sentence, reject.

Enumerate T (with our algorithm that enumerates T)

If A appears, accept.

If $\neg A$ appears, reject.

This algorithm decides T.

Now suppose T is inconsistent. Then $T = \{ \text{sentence} A \}$

is certainly decidable.
Examples

$\text{Cu } \exists \text{AtLeast}_k : k \geq 2$ is complete.

And $\exists \text{AtLeast}_k : k \geq 2$ is decidable (hence c.e.)

So $\text{Cu } \exists \text{AtLeast}_k : k \geq 2$ is decidable.

Example Dense Linear Order without endpoints.

It is complete and has a finite set of axioms.

So it is decidable.

(Non) Example Th \mathbb{N} is certainly complete. $\mathbb{N} = (\mathbb{N}, 0, +, \cdot, S)$

Later: Th \mathbb{N} is not decidable.

Hence Th \mathbb{N} is not axiomatizable.

Claim: For any structure \mathcal{A}, Th \mathcal{A} is complete.

But Th \mathcal{A} is not decidable, so Th \mathcal{A} is not axiomatizable.

A theory T is axiomatizable if there is a c.e. set T' such that $\text{Cu } T' = T$.
Proving undecidability:

Need a formal definition of algorithm + Church-Turing thesis has consequences;

1. Uniform representation of algorithms as strings, members of \(\mathbb{T}^* \), \(T = \{ 0, 1 \} \) w.l.o.g.

2. Gödel number is the string describing the finite set of unambiguous instructions for algorithm \(M \).

2. Universal algorithm. \(U(\overline{M^7}, w) \) \(w \in \mathbb{T}^* \), \(\overline{M^7} \in \mathbb{T}^* \)

\(U(\overline{M^7}, w) \) - simulates \(M \) on input \(w \)

\(U(\overline{M^7}, w) \) - halts/accepts/rejects/outputs the same that \(M(w) \) does.

"Compiler"/"interpreter".
Given a Γ_M for algorithm M, can modify Γ_M to form Γ_N for a related algorithm N.

For instance, N might accept if M rejects and reject if M accepts.

Another example concerns 2 algorithms.

Here M_1, M_2 compute any functions f_1, f_2.

Let $f = f_2 \circ f_1$.

Let M compute f.

$(\langle M_1, M_2 \rangle \implies \Gamma_M)$ is a computable function.
There is a $X \leq \mathbb{N}$ which is not decidable.

For any Σ, there is an $X \leq \Sigma^*$ which is not decidable.

Proof: There are countably many members of \mathbb{T}^*, so countably many algorithms (uniform representability).

But there are uncountably many $X \leq \mathbb{N}$.

So "most" $X \leq \mathbb{N}$ are undecidable.

This proves (c).

(b) is similar.

qed
Theorem: The set $\{X : X \subseteq \mathbb{N}\}$ is uncountable.

Proof: (Cantor's Diagonal Argument)

Proof by Contradiction. Suppose X_0, X_1, X_2, \ldots enumerates the power set $\{X : X \subseteq \mathbb{N}\}$ of \mathbb{N}.

Let $\mathcal{Y} = \{X_i : i \notin X_i\}$.

Hence $\mathcal{Y} \notin \{X_0, X_1, X_2, \ldots\}$, since $i \notin \mathcal{Y}$ if and only if $i \notin X_i$.

A "0" is row X_i.
A "1" is column j.

Let \mathcal{Y} be a set in a non-standard model of ZFC, meaning it exists.
Next: The Halting Problem or not decidable.