Encode formulas or sets of formulas over a finite alphabet:

\[\Sigma_{\text{prop}} = \{ \neg, \wedge, \vee, \rightarrow, \leftrightarrow, (,), \text{p, } 0, 1, \ldots, 9 \} \]

Example: \(p \lor \neg p \) is encoded by \((p \lor \neg p) \in (\Sigma_{\text{prop}})^*\)

For sets of formulas:

\[\Sigma_{\text{prop}^+} = \Sigma_{\text{prop}} \cup \{ , \} \]

\(\{ p_1, p_2, p_3 \} \) encoded by \(p_1, (p_2 \lor p_3) \in (\Sigma_{\text{prop}^+})^* \)

Theorem: The set of syntactically valid propositional formulas is decidable.

Here we are conflating formulas and the strings in \((\Sigma_{\text{prop}})^*\) that represent them.
Then the set of tautologies is decidable.

Pf: the method of truth tables.

Thus the set of finite sets \(T \) of syntactically correct formulas is decidable.

Thus the binary relation \(\langle TT, A \rangle \) of

\(TT \) is a finite set of formulas, \(A \) is a formula and \(TT \vdash A \) is decidable.

The set of satisfiable set \(TT \) of sentences is decidable.

\(\vdash \) contradictory sets.

Pf: Method of truth tables.
Thus: Suppose T is a c.e. set of formulas then, the $\forall A: T \vdash A \equiv$ c.e.

Pf: Algorithm that semi-decides this set is

Assumption: M enumerates T

Input: $A \ (w \in (Σ^pr)^*)$

Algorithm

If w does not correctly encode a formula, reject.

For $i = 0, 1, 2, 3, \ldots$

- Run M until it enumerates i member of T.
- Let T_i be these first i^* formulas.
- If $\exists M_i \vdash A$, accept (and halt).

End-for.

Algorithm semi-decides $\forall A: T \vdash A \equiv$ by the

Completeness Theorem.
Above theorem cannot be strengthened for decidable TT to conclude that $\forall A: TT \vdash A$ is decidable.

Example Let A be P_1.

Suppose TT might contain one of $P_1 \lor P_1 \land P_1 \land P_1$ or

$\forall_{j=1}^{k} P_i$.

Exercise If TT is c.e., there is a decidable T such $T \vdash \# TT$ (Craig’s Theorem)
Algorithm for first-order logic

Encode first-order formulas on alphabet \(\Sigma \) (for L-attribute language)

\[
\Sigma_{\text{fo-2}} = \Sigma \cup \{ \neg, \rightarrow, \forall, (,), x, 0, \ldots, n \} = \Sigma \cup L
\]

\[
\forall x_i (x_i = f(x_i)) \quad \forall x_1 x_1 = f(x_1)
\]

Encode finite sets of first-order formulas using

\[
\Sigma_{\text{fo-2}^+} = \Sigma_{\text{fo-2}} \cup \{ \exists \}
\]

The set of syntactically correct \(L \)-formulas is decidable

Encode proofs in \(FO \), by a sequence of formulas separated by commas as \((\Sigma_{\text{fo-2}^+})^*\) - string
Thus: The binary relation \(\langle T_I, P \rangle \) of pairs \(T_I \) and \(P \) such \(P \) is a valid FO proof from the hypotheses \(T_I \) is decidable.

Thus: the set of valid L-formula is c.e.

Pf: A is valid iff A has a proof.

Idea: Search for a proof\(A \). Accept if a proof is found.

Input: A

Algorithm

\[
\text{For } \ i = 1, 2, 3, \ldots \\
\text{Let } v_i \text{ be the } i^{th} \text{ member of } (\Sigma^*)^* \\
\text{If } v_i \text{ encodes a valid proof } P \text{ of } A, \\
\text{ accept (and halt)}
\]

End-for
The set of pairs \(\langle T, A \rangle \) s.t. \(T \) is a finite set of formulas, \(A \) is a formula, and \(T \vdash A \), is computably enumerable.

Pf: Algorithm

Enumerate all pairs \(\langle T', P \rangle \) s.t. \(P \) is a valid proof from hypotheses \(T' \). If \(T' = T \) and \(A \) is the final formula in \(P \), accept.
Theorem Let T be a c.e. set of formulas.
Then $\exists A : T \vdash A$, A is a formula) is c.e.

Proof Algorithm idea: Start enumerating T and all possible proofs (above tainting) and watch for a proof of A from a finite subset of T.

Assumption: M enumerates T

Input: A

Algorithm

For $i=1,2,3,\ldots$

Run M for i steps, let T_i be the subset of T enumerated by M within i steps.

For $j=1,2,3,\ldots i$

Let y_j be the j-th member of $(\Sigma^* \cup)^*$

If y_j runs codes a valid proof of A from T_i, accept

End for

End for
Theorem: If T is a complete, c.e. theory, then T is decidable.

(In the PDF.)