1. True or false? If true, give an algorithm. If false, what is the difficulty in constructing an algorithm? Let \(R, S, R_i, \ldots \) be subsets of \(\Sigma^* \) where \(\Sigma^* = \{0, 1\} \) (or subsets of \(\mathbb{N} \)). Let \(f: \Sigma^* \to \Sigma^* \) (or \(f: \mathbb{N} \to \mathbb{N} \)).

(It is OK use either semidecidability or computable enumerability. Typically it easier to use computable enumerability for hypotheses, and to use semidecidability for conclusions.)

(a) If \(R \) and \(S \) are c.e. (computably enumerable), then \(R \cup S \) is c.e.
(b) If \(R \) and \(S \) are c.e. (computably enumerable), then \(R \cap S \) is c.e.
(c) If \(R \) and \(S \) are c.e. (computably enumerable), then \(R \setminus S \) is c.e.
(d) If \(f \) is computable and \(R \) is decidable, is \(\{ w : R(f(w)) \} \) decidable?
(e) If \(f \) is computable and \(R \) is c.e., is \(\{ w : R(f(w)) \} \) c.e?
(f) If each \(R_i \) is decidable, then \(\bigcup_{i \in \mathbb{N}} R_i \) is c.e.

If (c) was true. \(S \) is c.e. \(\Rightarrow \) \(S \) is c.e.

Hence \(S \) is c.e. \(\Rightarrow \) \(S \) is decidable.

For \(\{ x \in \mathbb{N} : S_i = \emptyset \} \)

f is an example of a "many one reduction" from \(S \) to \(R \).

(d) - Yes, run algorithm for \(f \), then for \(R \).

(e) Yes, same idea, use the algorithm that semideclicates \(R_i \) to get an algorithm that semideclicates \(S \).

("No") \(\bigcup_{i \in \mathbb{N}} x \in R_i \) = \(\bigcup_{i \in \mathbb{N}} \{ i, w \} : w \in R_i \) = \(\{ i, w \} : w \in R_i \)

Take any \(X \subseteq \mathbb{N} \). Let \(R_i = \emptyset \) if \(i \notin X \)

\[\{ (i, w) : w \in R_i \} = \{ (i, w) : i \in X \} \]

- There are uncountably many \(X \subseteq \mathbb{N} \)
- There are countably many c.e. sets.