Cardinalities of structures.

Recall Proof of Completeness Theorem.

Then (Let L be a countable language.)

If T is consistent, then T is satisfiable.

Proof outline: Start with consistent T.

1. Add countably many new constant symbols d_1, d_2, d_3, \ldots

 Extended T to a strongly Henkin, consistent Δ

 i.e. for $\forall x \ A(x)$ a sentence

 $\rightarrow \bigwedge \Delta \models A(d_i) \rightarrow \forall x \ A(x)$ for some d_i.

2. Extended Δ to a complete theory \bar{T}.

3. Used equivalence classes of closed terms

 in $L \cup \{d_1, d_2, \ldots\}$ as the universe of a structure \mathcal{A}.

4. Then showed $\mathcal{A} \models \Delta$, ($\mathcal{A} \models T$).

Since $L \cup \{d_1, d_2, \ldots\}$ is countable, there are countably many terms, so $|\mathcal{A}|$ is countable.
In \mathcal{D}:

$A(d_i) \rightarrow \forall x A(x)$

$\exists x \neg A(x) \rightarrow \neg A(d_i)$

$\Delta \equiv \text{"If } \forall x A(x) \text{ fails, then } A(d_i) \text{ fails"}$

d_i - a counterexample to $\forall x A(x)$.

In Δ:

$\exists x A(x) \rightarrow A(d_j)$ for some j

d_j is a "witness" for $\exists x A(x)$.

Comprehension by Generalization (See also Theorem on Constants)

If $T \models A(x)$

then $T \models \forall x A(x)$

Theorem on constants:

If $T \models A(d)$ for a new constant d

then $T \models \forall x A(x)$

Strongly Henkin is based on:

$T \cup \exists A(d) \rightarrow \forall x A(x)$ is consistent

if d is "new" in T.
Completeness theorem for a countable language L

If Γ is a consistent set of L-sentences, then Γ has a countable model.

Cardinalities

1. Finite
2. Countably infinite
3. Uncountable infinite

\[0, 1, 2, \ldots, \aleph_0, \aleph_1, \ldots, \aleph_\omega, \aleph_\kappa, \ldots, \aleph_\delta, \ldots, \aleph_\omega, \ldots, \]

\aleph_κ = continuum

Corollary

The \mathbb{R}^n has a countable model.

$\mathbb{R} = (\mathbb{R}, 0, 1, +, 0, <)$

Corollary

Let ZF be Zermelo-Frankel set theory $\{\mathcal{E}\}$

(If ZF is consistent) ZF has a countable model.

"Skolem paradox"
The theory of real closed fields RCF.

A "smallest" model of RCF is the real closure of \(\mathbb{Q} \).

Completeness Theorem for (Uncountable) languages \(L \)

Define \(\text{card}(L) = \max\{ |L|, \mathcal{N}_0 \} = \{ |L| \text{ if } L \text{ is infinite} \}
\mathcal{N}_0 \text{ if } L \text{ is finite}. \)

So \(\text{card}(L) \) is equal to the number of \(L \)-formulas.

Notation \(|X| \) - cardinality of \(X \).

Theorem If \(T \) is a consistent set of \(L \)-sentences,
then \(T \) has a model of cardinality \(\leq \text{card}(L) \).

Pf - See exercise in the text.
Theorem:

1. If T has arbitrarily large finite models, then T has an infinite model.

2. If T has an infinite model, then T has a model of cardinality λ for every $\lambda > \text{card}(L)$. (Löwenheim-Skolem theorem)

Corollary to this theorem

\mathbb{N} has an uncountable (hence, nonstandard) model.

Corollary to earlier theorems (and their proof)

\mathbb{N} has a countable nonstandard model.

Proof ideas 1) already did same proof work.

2) Add new constants d_γ for $\gamma < \lambda$ (ie. λ many values γ)

Add to T the sentences $d_\gamma \neq d_\gamma$ for $\gamma \neq \gamma'$.

The result is finitely satisfiable, hence satisfiable.

Any model of $T \cup \{d_\gamma \neq d_\gamma : \gamma \neq \gamma'\}$ must have cardinality $\geq \lambda$.

and by Completeness Theorem it has a model of cardinality $\leq \aleph_0$.

Hence it a model of exactly \forall.

\textbf{Countable Los-Vaught:}

\underline{Theorem:} Let T be a theory in a countable language.
Suppose T has no finite models.
If T is \forall_0-categorical, then T is complete.

\underline{Defn:} T is K-categorical if all models of T of cardinality K are isomorphic.

So T is \forall_0-categorical if T has only one countably infinite model up to isomorphism.

\underline{Pf:} Suppose T is not complete. So $T \cup \{A\}$ and $T \cup \{\neg A\}$ are both consistent for some sentence A.
Let M, N be countable models of $T \cup \{A\}$ and $T \cup \{\neg A\}$.
$M \models T \land \neg A$, $N \models T \land A$, so $M \equiv N$ since T is \forall_0-categorical and since T has no finite models.
Next Finish discussing Chapter V on Thursday. Start algorithms in Chapter 7.

General Tarski-Vaught Test

Theorem: If T has an infinite model and T is λ-categorical for some $\lambda \geq \text{card}(L)$, then T is complete.

Proof: Almost identical to previous proof.

Let T be $\{ \text{"at least } k \text{ objects such that } P(x) \}$

$U \cup \{ \text{"at least } k \text{ objects such that } \neg P(x) \}$

For k an uncountable cardinal, there are non-isomorphic models T is λ-categorical — and hence T is complete.
Halmos - Naive Set Theory.

Kenneth Kunen - UG text + a
Graduate text on set theory.