Definition: A theory is a set of sentences closed under logical consequences (for sentences).

If T is a theory and $T \models A$, then $A \in T$.

Example: Theory of groups.

(Finitely axiomatized, elementary class, EC)

Theorem: Let T be a theory and suppose T has arbitrarily large finite models. (For all $k \in \mathbb{N}$, T has a model of cardinality $\geq k$.)

Then T has an infinite model.

"Over spill property" (spill over from arbitrarily large finite to infinite)

Proof: $\exists \overline{x}$ \text{ At least } k sentence says "there are at least k objects"

Use the fact that $T \cup \{ \text{At least } k \geq 2 \}$ is (finitely) satisfiable. It's finitely satisfiable since T has arbitrarily large models.

By Compactness, it is satisfiable. ("It" $= T \cup \{ \text{At least } k \geq 2 \}$)

Any model of $T \cup \{ \text{At least } k \geq 2 \}$ is an infinite model of T. \[\Box\]
Nonstandard model of the integers (i.e. the nonnegative integers)
\[\mathbb{N} = (\mathbb{N}, 0, S, +, -) \quad \mathbb{N} = \{0, 1, 2, \ldots \} \]

Definition
Th \(\mathbb{N} \) - \(\mathcal{L} \)-sentence \(A : \mathbb{N} \models A \). Set of sentences true in \(\mathbb{N} \).

\(\mathbb{N} \)-standard model of the integers.

A nonstandard model of the integers - a model \(\mathcal{M} \) of Th(\(\mathbb{N} \)) such that \(\mathcal{M} \) is not isomorphic to \(\mathbb{N} \).

Theorem
There is a nonstandard model of the integers.

Proof: \(\mathcal{M} \) is isomorphic to \(\mathbb{N} \), written \(\mathcal{M} \cong \mathbb{N} \), if they are the same “up to identity of objects in the universe”.

Formally
There is a bijection \(\pi : \{a\} \rightarrow \mathbb{N} \)

1. For every \(c \in \mathcal{L} \), \(\pi(c) \) is a \(\mathbb{N} \).
2. For every \(f \in \mathcal{L} \), and every \(a_1, \ldots, a_k \in \mathbb{N} \),
 \[\pi(f^\mathcal{M}(a_1, \ldots, a_k)) = f^\mathbb{N}(\pi(a_1), \ldots, \pi(a_k)) \]
3. For every \(R \in \mathcal{L} \), \(a_1, \ldots, a_k \in \mathbb{N} \),
 \[R^\mathcal{M}(a_1, \ldots, a_k) \iff R^\mathbb{N}(\pi(a_1), \ldots, \pi(a_k)) \]
Theorem. If $\mathcal{M} \sqsubseteq \mathcal{F}$ and \mathcal{C} is an \mathcal{L}-sentence then $\mathcal{M} \models C$ iff $\mathcal{F} \models C$.

Definition. \mathcal{M} is elementarily equivalent to \mathcal{F}, written $\mathcal{M} \equiv \mathcal{F}$, iff $\forall C, \mathcal{M} \models C \iff \mathcal{F} \models C$, i.e. $\text{Th } \mathcal{M} = \text{Th } \mathcal{F}$.

Restated Theorem. If $\mathcal{M} \equiv \mathcal{F}$, then $\mathcal{M} \equiv \mathcal{F}$.

Proof of existence of nonstandard model.

Let \mathcal{K} be a new constant symbol.

Let $T = \text{Th } \mathcal{K} \cup \{ \mathcal{C} \neq 0, \mathcal{C}
eq 1, \mathcal{C} \neq 2, \mathcal{C} \neq 3 \}$

$1 \equiv S(0)$,
$2 \equiv S(S(0))$,
$3 \equiv S(S(S(0)))$,

- closed term that represent integers ("numerals")

Then T is finitely satisfiable.

Let any finite subset have only finitely many $\mathcal{C} \neq k$'s.

Use the standard model \mathcal{N}, let \mathcal{C}^a be some other value than one of these k's.
Continuing proof

T is satisfiable by Compactness Theorem.

So T has a model \mathfrak{a}.

Claim $\mathfrak{a} \not\models \Pi$.

Any $\pi: \mathbb{N} \to \mathfrak{a}$ must have $\pi(1) = S^\mathfrak{a}(S^\mathfrak{a}(\ldots))$.

So $c^\mathfrak{a}$ is not in the range of π.

Contradiction.

Q.E.D.

Since $\mathbb{N} \models \forall x \exists y (y + y = x \lor S(y + y) = x)$

in \mathfrak{a}, there is $b \in \mathfrak{a}$, $b + b = c$ or $S(b + b) = c$

c is sometimes called a hyper-finite integer.

Later Incompleteness Theorem - impossibility of giving a complete set of axioms of \mathfrak{a}.

(For a non-standard integer)
In a, \(S^n(c^a) \in 1a \)

\[d = S^n(c^a), \quad d = 0, \quad d = 1, \quad d \neq 2 \]

\[\mathbb{N} = \forall x \left(x > k \Rightarrow S(x) > k+1 \right) \]

So, \(S^a/c^a \) is also non-standard.

Definition:

Next time, \(A \) can be chosen to be countable.
Def: Let \(L \leq L' \) be languages.

Let \(\mathcal{A} \) be an \(L \)-structure

Let \(\mathcal{B} \) be an \(L' \)-structure

\(\mathcal{A} \) is the \underline{restriction} of \(\mathcal{B} \) to \(L \) if

\[\sigma \subseteq |\mathcal{A}| \]

\[|\mathcal{A}| = |\mathcal{B}| \]

\(f^\mathcal{B}, c^\mathcal{B}, R^\mathcal{B} \) are the same as

\(f^\mathcal{A}, c^\mathcal{A}, R^\mathcal{A} \) for all \(f, c, R \in L \).

In this case, we say \(\mathcal{B} \) is an expansion of \(\mathcal{A} \).

\[\text{Next time: Cardinalities.} \]

\[\text{Review proof of Completeness Theorem.} \]

\[\text{Look at section IV.5} \]