Problems 1 and 5 depend on the proof of the Gödel Second Incompleteness Theorem which will be covered in class on Tuesday (March 8).

1. Let \(A \) be an arbitrary \(L_{PA} \)-sentence. Prove that \(PA \) does not prove \(\neg \text{Thm}_{PA}(\overline{\text{Thm}}_P A) \).

2. Let \(E \) be a self-referential formula such that \(R \) proves \(E \iff \text{Thm}_{PA}(\overline{\text{Thm}}_P E) \). Is \(E \) true or false? Justify your answer.

3. Let \(F \) be a self-referential formula such that \(R \) proves \(F \iff \text{Thm}_{PA}(\overline{\text{Thm}}_P F) \). Is \(F \) true or false? Justify your answer.

4. Let \(T \supseteq R \) be a consistent, axiomatizable theory. This exercise asks you to carry Rosser’s construction of an independent sentence. A Rosser proof of a formula \(A \) is defined to be a proof \(P \) of \(A \) such that there is no proof \(P' \) of \(\neg A \) with \(\overline{P'} < \overline{P} \). More formally, let \(\text{Neg}(x_1,x_2) \) represent the mapping \(\overline{A} \iff \overline{\neg A} \) in \(R \) and define \(\text{Rprf}_T(w,x) \) to be the formula

\[
\text{Rprf}_T(w,x) := \text{Prf}_T(w,x) \land \forall v \forall y (v < w \land \text{Neg}(x,y) \rightarrow \neg \text{Prf}_T(v,y)).
\]

Let \(\text{Rthm}_T(x) \) be the formula \(\neg \exists w \text{Rprf}_T(w,x) \). Finally, let \(D_R \) be a self-referential formula such that \(R \) proves \(D_R \iff \overline{\text{Rthm}}_T(\overline{D_R}) \). Also, let \(A \) be an arbitrary formula.

(a) There is a Rosser \(T \)-proof of \(A \) if and only if there is a \(T \)-proof of \(A \).

(b) If \(T \vdash A \), then \(T \vdash \text{Rthm}_T(\overline{A}) \).

[Hint: You will need to use \(T \supseteq R \) and Axiom \(R'_1 \).]

(c) If \(T \vdash \neg A \), then \(T \vdash \neg \text{Rthm}_T(\overline{A}) \).

(d) Prove that \(T \nvdash D_R \).

(e) Prove that \(T \nvdash \neg D_R \).

(f) Conclude that \(D_R \) is independent of \(T \).

5. Suppose \(T \supseteq R \) is consistent, axiomatizable and satisfies the Hilbert-Bernays-Löb conditions. Let \(D \) be a self-referential formula such that \(R \vdash D \iff \overline{\text{Thm}}_T(\overline{D}) \).

(a) Prove \(T \vdash D \iff \text{CON}_T \).

(b) Suppose that \(E \) is another sentence such that \(R \vdash E \iff \overline{\text{Thm}}_T(\overline{E}) \). Prove that \(T \vdash D \iff E \).

(c) Show that there is a theory \(T \) such that \(T \vdash \neg D \). (This shows that the assumption of \(\omega \)-consistency in Theorem IX.31 cannot be weakened to the assumption of consistency.)