1. Let T be the theory of linear orders from Example IV.89 using the language $L = \{<\}$. A model \mathfrak{A} of T is called well-founded if there is no sequence a_0, a_1, a_2, \ldots in $|\mathfrak{A}|$ such that $a_{i+1} <^\mathfrak{A} a_i$ holds for all $i \in \mathbb{N}$. Show that there is no set Γ of sentences over T that expresses the property of being well-founded. That is, there is no set Γ of sentences such that for all models \mathfrak{A} of T, we have $\mathfrak{A} \models \Gamma$ if and only if \mathfrak{A} is well-founded.

2. Let L be the language with a unary predicate symbol P (and, as always, equality). Let Γ be a set of sentences expressing that there infinitely many objects x satisfying $P(x)$ and infinitely many objects x satisfying $\neg P(x)$.

 (a) Describe explicitly the formulas in Γ.
 (b) Show that Γ is \aleph_0-categorical. Conclude that the theory axiomatized by Γ is complete.
 (c) Show that Γ is not κ-categorical for $\kappa > \aleph_0$.

3. Give an example of a theory which is κ-categorical for all infinite κ.

4. A theory is called categorical if all models of T are isomorphic.

 (a) Describe what must happen if T is categorical.
 (b) Suppose T is a categorical theory over a finite language L. Prove that T is finitely axiomatizable, that is, that there is a finite set of sentences Γ such that $\Gamma \models T$.

5. Let $\Sigma = \{a\}$. Let $f : \Sigma^* \to \Sigma^*$ be the unary function so that for all $w \in \Sigma^*$,

 $$f(w) = \begin{cases}
 \epsilon & \text{if the Riemann hypothesis is true} \\
 a & \text{if the Riemann hypothesis is false}
 \end{cases}$$

 Prove that f is computable.

6. Let $\Sigma = \{1\}$. Let f be the unary function defined by

 $$f(1^n) = \begin{cases}
 \epsilon & \text{if there is a run of } n \text{ consecutive } 7\text{'s in the decimal expansion of } \pi \\
 1 & \text{otherwise.}
 \end{cases}$$

 Prove that f is computable. (It is an open question whether there are arbitrarily long (finite) runs of 7’s in the decimal expansion of π.)