Completeness Theorem: T is a set of sentences, A is a formula:

(a) If $T \vdash A$, then $T \cup \{A\}$.
(b) If T is consistent, then T is satisfiable.

We prove part (b).

Languages: T, A are L-sentences / L-formulae.

$L^+ = L \cup \{d_1, d_2, d_3, \ldots \}$ new constant symbols.

Defn A closed term is a term with no variables.

Defn A set T is Henkin if for all sentences $\exists x A(x)$,

if $T \vdash \exists x A(x)$, then $T \vdash A(t)$ for some closed term t "witness" for $\exists x A(x)$.

$\exists x A(x)$ means $\neg \forall x \neg A(x)$.

Alternatively, T is Henkin if whenever $T \vdash \forall x \neg A(x)$,

then $T \vdash \neg A(t)$ for some closed term t.

Defn: T is strongly Henkin if for all closed sentences $\forall x A(x)$,

$T \vdash A(c) \to \forall x A(x)$

for some constant symbol c.
Lemma: If $\forall x A(x)$ is a sentence and c is a "new" constant symbol (not in Γ), then $\Gamma \cup \{ A(c) \rightarrow \forall x A(x) \}$ is consistent.

Pf: Suppose this fails, $\Gamma \vdash (A(c) \rightarrow \forall x A(x))$ by Contradiction Principle. By That: $\Gamma \vdash A(c)$ and $\Gamma \vdash \forall x A(x)$.

By $\Gamma \vdash A(c)$, we have $\Gamma \vdash \forall x A(x)$, by Theorem on Constants. Contradicts consistency of Γ.

Theorem: If Γ is a consistent set of L-sentences, then there exists a consistent, strongly Henkin set of L^+-sentences, called Δ, such that $\Delta \supseteq \Gamma$.

Pf: Enumerate all L^+-sentences $\forall x_i \exists y_j A_j(x_i)$, $j = 1, 2, 3, \ldots$ so that no d_j appears in $\forall x_i \exists y_k A_k(x_i, y_k)$ for $k < j$.

Let $\Gamma_0 = \Gamma$,

$\Gamma_{i+1} = \Gamma_i \cup \{ (A(d_j) \rightarrow \forall x_i \exists y_j A_j(x_i)) \}$

By induction, each Γ_i, is consistent. Set $\Delta = \bigcup \Gamma_i$.
Lindenbaum Theorem: If Δ is consistent and strongly Henkin, there is a consistent, complete and strongly Henkin $\mathcal{F} \models \Delta$ of \mathcal{L}^+-sentences.

Defn: \mathcal{F} is complete if for all \mathcal{L}^+-sentences A, either $A \in \mathcal{F}$ or $\neg A \in \mathcal{F}$.

Proof: $D_0 = \Delta$, $D_i+1 = \{D_i \cup \{A_i\} \text{ if consistent} \}
\{D_i \cup \{\neg A_i\} \text{ otherwise.} \}

where A_i's enumerate all \mathcal{L}^+-sentences.

Properties of \mathcal{F}: A, B - \mathcal{L}^+-sentences

$A \in \mathcal{F}$ if $\neg A \notin \mathcal{F}$.

$A \rightarrow B \in \mathcal{F}$ if $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

If $\mathcal{F} + A$, then $A \in \mathcal{F}$.

$\neg \forall x A(x) \in \mathcal{F}$ iff for some closed term t) $\neg A(t) \in \mathcal{F}$.

\mathcal{F} has a $A(d) \leftrightarrow \forall x A(x)$.
Structure 1: Symbol \mathcal{L} in language L.

Define α by $|\alpha| =$ set of closed \mathcal{L}^+-terms.

$C_\alpha = c$

$P_\alpha = \{ \left< t_1, \ldots, t_k \right> : P(t_1, \ldots, t_k) \in \Pi \}$

$f_\alpha(t_1, \ldots, t_k) = f(t_1, \ldots, t_k)$

Claim: $\alpha \not\models \Pi$, hence $\alpha \not\vdash \Pi$.

α is a \mathcal{L}^+-structure.

Definition of truth, gives values to more complex formulas.

$\alpha \models \neg P(t_i) \iff \alpha \not\models P(t_i) \iff P(t_i) \not\models \Pi \iff \neg P(t_i) \models \Pi$.

$\alpha \not\models A \rightarrow B \iff \alpha \not\models A \land \alpha \models \neg B \iff A \not\vdash \Pi \land B \not\vdash \Pi \iff A \not\models B \not\vdash \Pi$.

$\forall x \exists y \phi \iff \exists x \forall y \phi$

$\exists \phi$

$\forall \phi$
$\forall t \in T \forall x B(x) \iff \forall t \models B(t)$ for all L^t-terms t.

$\sigma(t) = t$ for all object assignments σ and closed terms t.

$\forall t \models B(t)$ for the "Henk.- witness" $\forall x B(x)$

$\Leftrightarrow B(t) \in \Pi$ by induction hypothesis.

$\forall x B(x) \in \Pi$ since $B(t) \models \forall x B(x) \in \Pi$.

$\forall x B(x) \in \Pi \Rightarrow$ for all closed terms $\forall t \models B(t) \in \Pi$

$\Leftrightarrow \forall t \models B(t)$ for all closed terms.

by induction hypothesis.

$\Rightarrow \forall t \models B(t)[\sigma]$ for all object assignments σ.

(σ/t) for arbitrary t.

$\Rightarrow \forall t \not\models \forall x B(x)$ by defn of truth.

So, $\forall t \not\models A \in \Pi$.

So, $\forall t \not\models A$ for all $A \in \Pi$.

σ is a L^t-structure.
Not Hintikka: Let $\forall \exists \in \{\exists x P(x)\}$

$L = \{c, ?\}$

$\vdash \exists x (P(x) \rightarrow \forall y P(y))$ - logically valid

$\exists x (P(x) \rightarrow \forall y P(y)) \vdash (\forall x P(x) \rightarrow \forall y P(y))$
What is \(s \in \mathcal{L} \) the language?

Modify the \(\lambda \varepsilon \)

Define: \(s \in \varepsilon \) if \(s + \in \mathcal{T} \).

\(\sim \) is an equivalence relation.

\[\llbracket s \rrbracket = \{ t : t \sim s \} = \text{the equivalence class that contains } s \]

Define: \(\mathcal{A} = \{ \llbracket s \rrbracket : s \text{ is a closed } L^+ \text{ term} \} \)

\[c^a = \llbracket c \rrbracket \]

\[f^a (\llbracket t_1 \rrbracket, \ldots, \llbracket t_k \rrbracket) = \llbracket f(t_1, \ldots, t_k) \rrbracket \]

\[p^a (\llbracket t_1 \rrbracket, \ldots, \llbracket t_k \rrbracket) = \text{True if } P(t_1, \ldots, t_k) \in \mathcal{T} \]

Lemma: \(f, P \) are well-defined.

Theorem: \(\varnothing \notin \mathcal{B} \) if \(\mathcal{B} \in \mathcal{T} \) for all \(L^+ \)-sentences \(B \)

Q.E.D. Completeness Theorem.
Compactness Theorem: Let \mathcal{T} be a set of sentences.

1. $\mathcal{T} \models A$ if and only if $\mathcal{T}' \models A$ for some finite $\mathcal{T}' \subseteq \mathcal{T}$.

2. \mathcal{T} is unsatisfiable iff some finite subset of \mathcal{T} is unsatisfiable.

Pf: An immediate corollary.
Application: Fix \(L \).

Theorem: There is no sentence \(B \) such that \(A \vdash A \).

Proof: We'll show no sentence \(C \) such that \(A \vdash C \)

\(A \equiv C \) if and only if \(|a| \) is finite.

Let \(T = \{ \text{Atleast}_1, \text{Atleast}_2, \text{Atleast}_3, \ldots \} \).

\(A \models T \) iff \(|a| \) is finite.

If \(C \) had the above property, \(T \not\models C \).

So some finite \(T' \subseteq T \), has \(T' \models C \).

But this means \(\text{Atleast}_k \models C \) for some finite \(k \).

Which is false.

\(\Box \).
Theorem: There is no set T of sentences such that $T \cup T'$ is finite.

Proof: Recall T, $T \cup T'$ is finite.

Suppose, $\forall A: T \cup T' \not\models A$. Then $T \cup T'$ is unsatisfiable.

By compactness, \exists a finite unsatisfiable set $T \cup T' \cup S$, $T \cup S \cup T'$.

Let B be $S \cup T'$, C be $S \cup T'$. A - big "and".

Now $\models T$ iff $A \models C$. A is finite.

$\exists \emptyset$