(Hand in for the instructor to upload to Gradescope)
Name: \qquad
YID:

1. Which of the following are true statements? (Mark "T" or "F".)

T (a) Cats have wings only if dogs have wings.
F
(b) Parrots have wings only if dogs have wings.

I
(c) Parrots have wings if dogs have wings.

Ted) If dogs have wings then parrots have wings.
ICe) If cats have wings and dogs have wings, then cats have wings or dogs have wings.
T(f) If cats have wings or dogs have wings, then cats have wings and dogs have wings.
2. Rewrite items (a)-(c) above as "if ... then ..." statements.
"If cats have wings, then dogs have wings."
"If parrots have wing, then dogs have wings."
"If dogs have wings, then parrots have wings."
3. Let \mathbb{Z} denote the set of integers. Describe, as simply as possible, the following sets in English:
(a) $\{2 k: k \in \mathbb{Z}\}$ The set of even integers
(b) $\{4 n: n \in \mathbb{Z}\} \cup\{4 n+2: n \in \mathbb{Z}\}$ The set of even integres
(c) $\{n: n=2 k$ for some $k \in \mathbb{Z}\}$ The set ort eveninfegev,
(d) $\{n: n=2 k$ for all $k \in \mathbb{Z}\}$ The empty set. (\varnothing)
(e) $\{4 k: k \in \mathbb{Z}\} \backslash\{2 k: k \in \mathbb{Z}\}$ The empty set. (\varnothing)

Your comments/concerns/questions/feedback to the instructor:

Math 160A - Fall 2021 - Class Work - In Lecture, September 28
(Hand in for the instructor to upload to Gradescope)
Name: \qquad
PID:

1. Which of the following are correctly parenthesized according to the formal definintion of formulas? (Answer "Yes" or "No".)
Y (a) p_{3}
Neb) $\left(p_{3}\right)$
$Y(\mathrm{c}) ~ \neg p_{3}$
N
(d) $\left(\neg p_{3}\right)$
$N(\mathrm{e}) \neg p_{3} \rightarrow p_{4}$
$\underline{Y}(\mathrm{f})\left(\neg p_{3} \rightarrow p_{4}\right)$
$N(\mathrm{~g})\left(\neg p_{3}\right) \rightarrow p_{4}$
$\boldsymbol{N}(\mathrm{h})\left(\left(\neg p_{3}\right) \rightarrow p_{4}\right)$
2. Add parentheses to make these correct formulas (using the class's conventions on precedense of operations).

$$
\begin{aligned}
& \text { (a) }\left(\left(\neg p_{1} \vee p_{2}\right) \leftrightarrow\left(p_{1} \wedge \neg p_{2}\right)\right) \\
& \text { (b) } \left.)\left(\neg p_{2} \vee p_{1}\right)-\left(\left(\neg p_{1} \wedge \neg p_{2}\right) \rightarrow\left(p_{6} \wedge \neg p_{7}\right)\right)\right)
\end{aligned}
$$

3. Give truth assignments φ which show that:
(a) $\left(p_{1} \vee p_{2}\right) \wedge\left(\neg p_{1} \vee p_{3}\right)$ is satisfiable.

$$
\begin{aligned}
& \varphi\left(p_{1}\right)=\varphi\left(p_{2}\right)=\varphi\left(p_{3}\right)=T \\
& \varphi\left(p_{1}\right)=\varphi\left(p_{2}\right)=\varphi\left(p_{8}\right)=F
\end{aligned}
$$

4. Give truth tables which show that the following two formulas are tautologies.
(a) $\left(p_{1} \rightarrow p_{2}\right) \leftrightarrow\left(\neg p_{2} \rightarrow \neg p_{1}\right)$.
(b) $p_{1} \rightarrow p_{2} \rightarrow p_{1}$.

(Hand in for the instructor to upload to Gradescope)
Name:
BID:
5. Indicate whether true or false. For those that are false, give truth assignments that show they are false. (Write T or F on the lines.)
F
(a) $p \rightarrow q \vDash q \rightarrow p . \quad \varphi(p): F \quad \varphi(q)=T$

F (b) $p \rightarrow q \vDash \neg p \rightarrow \neg q . \quad \varphi(p)=F \quad \varphi(q)=T$
F (c) $p \leftrightarrow q \vDash p \vee q . \quad \varphi(\rho)=F \quad \varphi(q)=F$
$T(\mathrm{~d}) \neg(p \leftrightarrow q) \vDash p \vee q$.
2. Each formula in the left column is equivalent to a formula in the right column. Indicate which one by writing one of " 1 " through " 4 " on the lines.

2 a. $(p \rightarrow q) \rightarrow r$.
1 b. $p \rightarrow(q \rightarrow r)$.

1. $p \wedge q \rightarrow r$.

4 c. $p \rightarrow q \vee r$.
1 d. $p \rightarrow(\neg r \rightarrow \neg q)$.
2. $(\neg p \vee q) \rightarrow r$.
3. $p \rightarrow q \wedge r$.
4. $(p \wedge \neg q) \rightarrow r$.
$\neg r \rightarrow \neg q \vDash=\varepsilon \rightarrow r$
3. Let Γ be the set of formulas $\left\{p_{i} \rightarrow p_{i+1}: i \geq 1\right\}$. I.e., $\Gamma=\left\{p_{1} \rightarrow p_{2}, p_{2} \rightarrow p_{3}, p_{3} \rightarrow\right.$ $\left.p_{4}, \ldots\right\}$. First, describe what truth assignments φ satisfy Γ.
$\pm \neq) \quad \varphi\left(p_{i}\right)=F, \forall:$
None gencendly

$$
\psi_{j}\left(p_{i}\right)=T \quad \text { ff } i \geqslant j
$$

$$
\left(\varphi \text { is like } \psi_{\infty}\right)
$$

Then, for each of the following indicate whether true or false.
Yes (a) Γ is satisfiable.

$$
\begin{aligned}
& \frac{N_{0}}{N_{0}}(\mathrm{e}) \Gamma \vDash \neg p_{2} \vee p_{1} . \\
& \underline{Y_{\text {es }}}(\mathrm{f}) \Gamma \vDash p_{3} \rightarrow p_{1} \vee p_{2} . \\
& \frac{Y_{\text {es }}}{}(\mathrm{g}) \Gamma \not p_{1} \vee p_{2} \rightarrow p_{1} \rightarrow p_{2} \rightarrow p_{1} . \in \text { A toatolosy }
\end{aligned}
$$

Y\& (b) $\Gamma \vDash p_{2} \rightarrow p_{3}$.
No (c) $\Gamma \vDash p_{3} \rightarrow p_{2}$.
Yes (d) $\Gamma \vDash \neg p_{1} \vee p_{2}$.
Comments/concerns/questions/feedback to the instructor:

$$
\neq p_{1} \rightarrow p_{2} \rightarrow p_{1}
$$

Math 160A - Fall 2021 - Class Work - In Lecture, October 5
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. Express the following formulas in CNF form and in DNF form:
(a) $p \leftrightarrow q$
(b) $p \rightarrow(q \rightarrow p)$. [Hint: It is a tautology.]
(c) $p \wedge q \rightarrow r$. [Hint: Only one truth assignment to p, q, r falsifies this formula.]
(a) $\quad(p \vee \neg q) \wedge(\neg p \vee q) \quad(p \wedge q \mid \vee(\neg p \wedge \neg g)$

$$
\begin{gathered}
\text { pvip is both a CNF } \\
\text { ard a DNF } \\
\text { formula! }
\end{gathered}
$$

(c) $\neg p \vee \backsim q \vee \vee$ - this formula is also both a CNF formula and a DNF formula.
-The straightforward construction of a DMF formula for (c) would give a DNF formula with 7 disjuncts, each a conjunction of 3 literals.
2. The NOR connective is dual to NAND, similarly to the way that \vee is dual to \wedge. The symbol \downarrow is used to denote NOR, and $\varphi(p \downarrow q)$ is defined to equal $\varphi(\neg(p \vee q))$.

- Show how to express $\neg p$ and $p \vee q$ using only the NOR connective \downarrow.
- Conclude that $\{\downarrow\}$ is adequate (truth-functionally complete).

$$
\begin{aligned}
& \neg A \vDash \Rightarrow \quad A \downarrow A \\
& A \downarrow B \vDash \neq \quad(A \downarrow B) \downarrow(A \downarrow B)
\end{aligned}
$$

Comments/concerns/questions/feedback to the instructor:

Math 160A - Fall 2021 - Class Work - In Lecture, October 7
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. Show that $\left\{M a j^{3}\right\}$ is not adequate.

If $\varphi\left(n_{i}\right)=T$ for all i, then $\varphi(A)=T$ for any $\left.\left\{M_{c_{j}}\right\}\right\}$-formula.

$$
\frac{P_{1}}{T} \frac{M_{a j}^{3}\left(p_{1}, p_{1}, p_{1}\right)}{T}
$$

Also: if $\varphi(p, 1)=F$ for all i, then $\varphi(A)=F$ for any $\left(M_{0 j} r\right)$-formula.
2. Show that $\left\{\neg, M a j^{3}\right\}$ is not adequate.

The constant \perp "rout equentent to any $\left.\mid n, M_{c j} j\right\}$-formula

$$
\begin{array}{ccccc}
\frac{p_{1}}{T} & \frac{M_{a j}{ }^{1}\left(p_{1}, p_{1}, p_{1}\right)}{T}-\frac{M_{c j}{ }^{1}\left(p_{1}, p_{1}, p_{1}\right)}{F} & \frac{\left.M_{c j}{ }^{7} / 2 p_{1}, p_{1} p_{1}\right)}{T} & \frac{\left.M_{a j}^{3} / 2 p_{1}, p_{1} p_{1}\right)}{F} & \frac{M_{a j}^{3}\left(p_{1}, p_{1}, p_{1}\right)}{F} \\
F & F & T & T & T
\end{array}
$$

the Even $\left(M_{a} j^{3}, 1\right.$ I-fumule on p_{1}, p_{2} is e gurvalett x are of
3. Give a DNF formula tautologically equivalent to $M a j^{3}(p, q, r)$.

$$
p_{1}, p_{2}, \neg p_{1}, a \neg p_{2}
$$

$(p \wedge q \wedge r) \vee(p \wedge q \wedge \sim v) \vee(p \wedge \sim q \wedge r) \vee(\neg p \wedge q \wedge r)$.
$(p \wedge q) \cup(q \wedge \psi) \cup(p \wedge r)$.

For further discussion: Give a CNF formula tautologically equivalent to $M a j^{3}(p, q, r)$.
"at wort of pigir is fulfe"

$$
(p \vee q) \wedge(q \vee \checkmark) \wedge(p \vee \checkmark)
$$ least one", true!

Comments/concerns/questions/feedback to the instructor:

Math 160A - Fall 2021 - Class Work - In Lecture, October 12
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. Show $\vdash(A \rightarrow B) \rightarrow(A \rightarrow A)$ by giving an explicit PL-proof.
[Hint: The PL-proof has three lines, ie. three formulas.]

$$
\begin{array}{ll}
(A \rightarrow B \rightarrow A) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow A) & P L 2 \\
A \rightarrow B \rightarrow A & P L 1
\end{array}
$$

$$
(A+B)+(A \rightarrow A)
$$

2. Prove that $A \rightarrow B, C \vdash A \rightarrow(C \rightarrow B)$. Did you need both the hypotheses? [Use the Deduction Theorem.]

By the Deduction Theorem, At sufforerto show: No

$$
A \rightarrow B, C, A \vdash C \rightarrow B
$$

Suffer to show. $A+B, C, A, C \vdash B$
Thu hates by Modes Powers. $A \rightarrow B, A+B$
3. Prove that $A \rightarrow B \rightarrow C \vdash B \rightarrow(A \rightarrow C)$.nice! so $A \rightarrow B, A, C \vdash B$

By the Droductin The orem, it suffices to show.

$$
A \rightarrow B \rightarrow C, B, A \vdash C
$$

This fellows by 2 user of Modes Ponens.
4. Prove that $A \rightarrow B \vdash(\neg A \rightarrow A) \rightarrow B$

Hypothetical Syllogise $A \rightarrow B, \quad 2 A \rightarrow A+\neg A \rightarrow B$
$P L Y:+(\neg A \rightarrow A) \rightarrow A$
$A \rightarrow B, 2 A \rightarrow A+A$ by Mohur Ponene
$A \rightarrow B_{1}, 2 \rightarrow A+A$
$A \rightarrow B, 2 A \rightarrow A+B$ by Moder Pones ayala.
Comments/concerns questions/feedback to the instructor:

Math 160A - Fall 2021 - Class Work - In Lecture, October 14
(Hand in for the instructor to upload to Gradescope)

Name:
PL axioms:
PL1: $A \rightarrow B \rightarrow A$
PL2: $(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$
PL3: $\neg A \rightarrow A \rightarrow B$
PL4: $(\neg A \rightarrow A) \rightarrow A$

- $A \vee B$ and $A \wedge B$ stand for $\neg A \rightarrow B$ and $\neg(A \rightarrow \neg B)$.

1. Prove that $\{\neg(A \rightarrow \neg \neg A)\}$ is inconsistent. (This is the same as $\{A \wedge \neg A\}$.)

THIS IS THE CORRECTED VERSION. SEE THE NEXT PAGE FOR THE IN-CLASS VERSION.
2. Prove that $\{\neg(A \rightarrow B), \neg A\}$ is inconsistent.

Math 160A－Fall 2021 －Class Work－In Lecture，October 14
（Hand in for the instructor to upload to Gradescope）

Name：
PID：$\quad \neg(A \rightarrow \cap A)$ ，

PL axioms：
PL1：$A \rightarrow B \rightarrow A$
PL2：$(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$
PL3：$\neg A \rightarrow A \rightarrow B$
PL4：$(\neg A \rightarrow A) \rightarrow A$
－$A \vee B$ and $A \wedge B$ stand for $\neg A \rightarrow B$ and $\neg(A \rightarrow \neg B)$ ．

1．Prove that $\{\neg(A \rightarrow \circlearrowleft A)\}$ s inconsistent．（This is the same as $\{A \wedge \neg A\}$ ．）
Suffice r to show：$+A \rightarrow$ ？ ．
－If We proved this in class．

Since：$\quad \phi 1(A \rightarrow \neg \neg A)$ ff $\{\neg(A \rightarrow \supset A)\}$ is
in consistent
（Proof by con fradiction \＃1）．

2．Prove that $\{\neg(A \rightarrow B), \neg A\}$ is inconsistent． Suffices to shaw $1 A+A \rightarrow B$
（Proof ha Cendudich\＃＂）
Thar．suffices to show $\neg A, A+B$ by Deduction Theron． \rightarrow This has already beenshoun．
（or siffiesto shaw ：$+\neg A \rightarrow A+B$ ，dro by Deductai） this，＂アしろ

Comments／concerns／questions／feedback to the instructor：

Math 160A - Fall 2021 - Class Work - In Lecture, October 19
(Hand in for the instructor to upload to Gradescope)

PL axioms:
PL1: $A \rightarrow B \rightarrow A$
PL2: $(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$
PL3: $\neg A \rightarrow A \rightarrow B$
PL4: $(\neg A \rightarrow A) \rightarrow A$

- $A \vee B$ and $A \wedge B$ stand for $\neg A \rightarrow B$ and $\neg(A \rightarrow \neg B)$.

1. Suppose $\Gamma \cup\{A\}$ and $\Gamma \cup\{\neg A\}$ are bath inconsistent. Prove that Γ is inconsistent

Therefore if T is conrsitent, then at loos ane of Mu[A\} ~ a ~ T u \ { n A] ~ } is consistent
Assume TuSA) is inconsistent and $T u\{7 A\}$ is ronsistrut
Thar $T+1 A$ and $T \in A$ by Raf by Cantradicke Version $1+2$
So T is incousitut!
qed
2. Suppose $\Gamma_{i}, i \geq 1$, are sets of formulas and that, for all $i, \Gamma_{i} \subseteq \Gamma_{i+1}$. Let $\Gamma=\bigcup_{i} \Gamma_{i}$.

Also suppose Γ is . Prove that, for some i, Γ_{i} is \equiv
in consistent
in consistent

So if each T_{i} is consistent, $T_{i} \subseteq T_{i+1}$, then $U T_{i}$ is consistent
Suppose T is in consistent
So Tr $\neg\left(p_{1} \rightarrow p_{1}\right)$ (Fact: Tr $q\left(p_{1} \rightarrow p_{1}\right)$ eft
So $\exists \Delta \leqslant T, \Delta$ is finite, $\Delta+\eta\left(p,-p_{1}\right)$
Let $\Delta=\left\{c_{11}, \ldots, c_{k}\right\}$, each C_{j}, in some $T_{i j}$
Let $I=\max \left(i_{j}\right)$. Then eat $C_{J} \in T_{I}$
So $\Gamma_{I}+\neg\left(p_{1}+p_{1}\right)$, ie. Γ_{\perp} is in consistent s
Comments/concerns/questions/feedback to the instructor:

Name:
PID:

J cha likes his mother
Likes (John, Mother (John))

1. Use unary predicates $\operatorname{Dog}(x), \operatorname{Cat}(x), \operatorname{Person}(x)$, the binary predicate Likes (x, y), the constant symbols John and Mary, the unary function $\operatorname{Mother}(x)$ and the equality sign $=$ to express the following English sentences in first-order logic.
(a) John is neither a cat nor a dog.

$$
\neg\left(C_{a t}\left(J_{0} h_{a}\right) \triangleleft \operatorname{Dog}\left(T_{0} L_{n}\right)\right)
$$

(b) All cats dislike all dogs.

$$
\forall x \forall y\left(\operatorname{Cat}(x) \cap D_{\text {vg }}(y)+\mathcal{L i}^{\prime}\left(k_{p}(x, y)\right) .\right.
$$

(c) John likes every person.

$$
\forall x(\operatorname{Pepsin}(x) \rightarrow \text { Likes }(\text { Joker } x))
$$

(d) John likes anyone who likes all cats
anyone allow dogste cats \& unpetar.
(e) Everyone is liked by their mother.

$$
\forall x(\text { Likes }(M \text { other }(x), x))
$$

$$
\forall x((\underbrace{\forall y(\operatorname{Cat}(y) \rightarrow \text { Likes }(x, y)}) \rightarrow \text { Like, }(\text { Tun }, x))
$$

(f) Everyone is liked by their mother's mother.

$$
\forall x \text { (Likes (Mother (Mother (x)), x). }
$$

(g) John likes everyone who has the same mother (as John).

$$
\forall x\left(\text { Mother }(x)=\text { Mother }(\text { John }) \rightarrow \text { Likes }\left(J_{0} L_{n} x\right)\right)
$$

(h) Mary likes each person that John likes.

$$
\forall x\left(\text { Likes }(J o h n, x) \rightarrow \text { Likes }\left(M_{o y}, x\right)\right)
$$

(j) John likes precisely those who dislike themselves.

Comments/concerns/questions/feedback to the instructor: Like, (Tu han, Tu hal)

$$
\leftrightarrow \sim \text { Likes (Juhr, Johns }
$$

(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. Let L_{PA} be the language $\{0, S,+, \cdot\}$ (zero, successor, addition, multiplication). Give first-order formulas that express the following properties over the non-negative integers.
2. Express $x \leq y$ as an L_{PA}-formula.

$$
\exists 2(x+2=y)
$$

2. Express $x \mid y$, " x is a divisor of y (y is a multiple of x)," as an L_{PA}-formula.

$$
\begin{gathered}
-12(x \cdot 2=y) \\
1 \\
\left(\begin{array}{l}
\text { bound. }
\end{array}\right.
\end{gathered}
$$

3. Express $x=\operatorname{lcm}(y, z)$, " x is the least common multiple of y and z ", as an $L_{\mathrm{PA}} \cup\{\leq, \mid\}$ formula.

$$
y \mid x \wedge z(x \wedge \forall w(y / w \wedge z / w \rightarrow x \leq w)
$$

4. Express $\operatorname{Prime}(x)$, " x is a prime number", as an $L_{\mathrm{PA}} \cup\{\leq, \mid\}$-formula.

$$
\forall y|y| x \rightarrow y=S(0) \cup y=x) \wedge x \neq S(0) \quad \begin{array}{ll}
\text { Prime }(0) \text { is false } \\
& \text { ie } y=2 . \\
& 210 \text { because- } 200=0
\end{array}
$$

5. Express " x is a prime number and y is a power of x ", as an $L_{\mathrm{PA}} \cup\{\leq, \mid$, Prime $\}$-formula.

$$
\operatorname{Primet}(x) \wedge \forall z(z(y \rightarrow x \mid z \vee z=5(0))
$$

(The property " y is a power of x " can also be expressed by an L_{PA}-formula (without the condition that x is prime), but it is much more difficult to do)

Comments/concerns/questions/feedback to the instructor:

Name:
PID:
We define two structures \mathfrak{A} and \mathfrak{B}. They both use the language $L=\{E\}$ where E is a binary predicate symbol. We think of this as being the language for directed graphs where $E(x, y)$ means there is a directed edge from x to y.
I. The structure \mathfrak{A} has $|\mathfrak{A}|=\{0,1\}$, and $E^{\mathfrak{A}}=\{\langle 0,1\rangle,\langle 0,0\rangle\}$.

- Draw a picture of A.
- Is the sentence $\forall x \exists y E(x, y)$ true in (satisfied by) \mathfrak{A} ? I.e., Does $\left.\mathfrak{A} \vDash \forall x \exists y E(x, y) N_{0} \boldsymbol{\sigma} \mid \boldsymbol{x}\right)=1$ hold?
- Does $\mathfrak{A} \vDash \forall x \exists y E(y, x)$ hold?
Yes

II. The structure \mathfrak{B} has $|\mathfrak{B}|=\{0,1,2\}$, and $E^{\mathfrak{A}}=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,2\rangle,\langle 2,0\}$.

Draw a picture of \mathfrak{B}.
Suppose $\sigma\left(x_{1}\right)=0, \sigma\left(x_{2}\right)=1, \sigma\left(x_{3}\right)=2$ and $\sigma\left(x_{4}\right)=0$. Which of the following are correct statements?

- $\mathfrak{B} \vDash x_{1}=x_{4}[\sigma]$. Yes $\sigma\left(x_{1}\right)=0 \quad \sigma\left(x_{y}\right)=0$
$\begin{array}{rlr}\text { - } \mathfrak{B} \vDash \forall x_{2} E\left(x_{1}, x_{1}\right)[\sigma] \text {. Yes } & \sigma\left(x_{1}\right)=0 . & T\left(x_{1}\right) \text { does rit } \\ \text { - } \mathfrak{B} \vDash \forall x_{1} E\left(x_{1}, x_{1}\right)[\sigma] \text {. No } & \tau\left(x_{1}\right)=2 & \text { meth }\end{array}$
$\begin{aligned} \text { - } \mathfrak{B} & \vDash \forall x_{1}\left(E\left(x_{2}, x_{1}\right) \rightarrow E\left(x_{1}, x_{1}\right)\right)[\sigma] . \\ & \text { No, try } \underline{T\left(x_{1}\right)=2}\end{aligned}$

$$
\begin{aligned}
\mathcal{L} & : \forall x_{1} E\left(x_{1} x_{1}\right) \\
& \left.\Leftrightarrow \mathcal{L} \vDash \exists x_{1}\right\urcorner E\left(x_{1} x_{1}\right) .
\end{aligned}
$$

$$
\mathcal{L} \vDash E\left(x_{2}, x_{1}\right) \rightarrow E\left(x_{1}, x_{1}\right)[\tau)
$$

III. Give examples of sentences that are satisfied by \mathfrak{A} but not by \mathfrak{B}.

$$
\begin{aligned}
& \left.\forall x_{1}\left(\exists x_{2} E\left(x_{2}, x_{1}\right) \rightarrow E\left(x_{2}, x_{2}\right)\right)\right)-? \\
& \forall x_{1} \forall x_{2} \forall x_{1}\left(x_{1}=x_{2} \vee x_{2}=x_{3} \vee x_{1}=x_{3}\right) \leq 2 \text { element } \\
& 7 \forall x_{1} \exists x_{2} E\left(x_{1} x_{2}\right) \text { - Some vertex has } \\
& \text { Comments/concerns/questions/feedback to the instructor: outgo olin ed ge. }
\end{aligned}
$$

Math 160A - Fall 2021 - Class Work - In Lecture, November 4
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

- The reals $\mathcal{R}=(\mathbb{R}, 0,+, \cdot)$.
I.e., $|\mathcal{R}|=\mathbb{R}$, and $0^{\mathcal{R}}=0$ and $+^{\mathcal{R}}=\{\langle a, b, c\rangle: a, b, c \in \mathbb{R}$ and $a+b=c\}$, and $\cdot \mathcal{R}=\{\langle a, b, c\rangle: a, b, c \in \mathbb{R}$ and $a \cdot b=c\}$.
- The rationals $\mathcal{Q}=(\mathbb{Q}, 0,+, \cdot)$.
- The integers $\mathcal{Z}=(\mathbb{Z}, 0,+, \cdot)$.
- The non-negative integers $\mathcal{N}=(\mathbb{N}, 0,+, \cdot)$.

Give sentences that distinguish these four structures. Namely, for each structure find a sentence which is satisfied by just that structure and not by any of the other three.
A.

$$
\exists x(\underbrace{x \cdot x=x \wedge x \neq 0}_{\text {frei- } x=1} \wedge \underbrace{\forall y(y+x \neq 0)}_{\text {False }+t h y=-1} \text { - } \text {. }
$$

"There " a element -1 "

$$
x-x=x \wedge x \neq 0 \text { - defines } 1 \text { in all } 4 \text { structure c. }
$$

$$
x \cdot x=x \wedge x+x=x \text { - de fines } 0 \text { in all y stunctures. }
$$

$$
\forall x \exists y(x \cdot y=1) \quad \text { False is all } 4 \quad(x=0)
$$

B

$$
\forall x(x \neq 0 \rightarrow \exists y(x: y=1)) \text { True is } \cap, Q \text {, not in } z, X \text {. }
$$

$$
\left.\left(\neg A_{\wedge}\right\urcorner B\right) \text { - True } \mathcal{R} Z \text { not } R, Q, n
$$

$$
\forall x \exists_{p} \exists q(x \cdot p=q) \quad \text { - True for all } 4, \quad \text { Take } p=I, q=x
$$ $\forall x \exists y(x=y \cdot y)$. "Everything ho a square not"

Comments/concerns/questions/feedback to the instructor:

Name:
PID:

Adobe Acrobat crashed at the end of class, and handwritten annotations could not be saved. See the podcast for the annotations and discussion. The version below includes corrections to the typos discused in the lecture.

1. Let A be the formula $\exists x \exists y \exists z \exists u(x \cdot x+y \cdot y+z \cdot z+u \cdot u=v)$. This says v can be written as the sum of four squares. (A theorem of Lagrange states that every nonnegative integer can be written as the sum of four squares.)
(a) Give examples of terms that are and are not substitutable in A for v.
(b) Give a formula that expresses that $x+y$ is the sum of four squares.
2. Give an example of a formula B such that $B(y / x)(x / y)$ is not equal to B. Can you do this even if in both cases substitutability holds? Can you do it even if there are no "extra" occurrences of y ?
3. (Parallel substitution versus sequential substitution.) Let C be $x_{1}=x_{2}$. What is $C\left(x_{2}, x_{3} / x_{1}, x_{2}\right)$? What is $C\left(x_{2} / x_{1}\right)\left(x_{3} / x_{2}\right)$? Are they the same?

Comments/concerns/questions/feedback to the instructor:
（Hand in for the instructor to upload to Gradescope）
Name：

PID：
A prenex formula is a formula with all of its quantifiers at the beginning of the for－ mola，namely $Q x_{i_{1}} Q x_{i_{2}} \cdots Q x_{i_{k}} B$ where B contains no quantifiers．

The tautological equivalences to the right allow expressing any first－order formula as a logically equivalent prenex formula． （Any use of \leftrightarrow needs to be reexpressed in terms of \wedge and \rightarrow ．）
$\forall x A$ に $\neg \exists x \neg A$
$\exists x A \vDash \neg \neg x \neg A$
$\neg \forall x A$ に $\exists x \neg A$
$\neg \exists x A$ に $\forall x \neg A$
$C \wedge \exists x A \vDash=\exists x(C \wedge A)$
$\frac{C \wedge \forall x A \vDash=\forall x(C \wedge A)}{C \vee \forall x A \vDash=\forall x(C \vee A)}$
$C \vee \exists x A \vDash=\exists x(C \vee A)$

$(\exists x A) \rightarrow C \equiv \exists \forall x(A \rightarrow C)$
1．Convert the following formulas to logically equivalent prenex formulas．
（a）（＂Every dog knows a cat that likes John＂）
$\forall x(\operatorname{Dog}(x) \rightarrow \exists y(\operatorname{Cat}(y) \wedge \operatorname{Knows}(x, y) \wedge \operatorname{Likes}(y, J o h n)))$.

$$
\forall x \exists y(D \operatorname{og}(x) \rightarrow \text { (attn) K Kwa } x, y) \text {) Liker l } y \text {, To hall })
$$

（b）（＂Anyone who knows a cat that likes John is a dog＂）

$$
\forall x(\exists y(\operatorname{Cat}(y) \wedge \operatorname{Knows}(x, y) \wedge \operatorname{Likes}(y, \operatorname{John})) \rightarrow \operatorname{Dog}(x)) .
$$

$$
\forall x \forall y\left(\left(\operatorname{Cat}(y) \cap \operatorname{Knows}(x, y) \wedge L_{1} \text { ier er }\left(y, J_{\mathrm{L}} L_{n}\right)\right) \rightarrow D_{\text {aug }}(x)\right)
$$

（c）（＂x is prime＂）

$$
x \neq S(0) \wedge \forall y(\exists z(y \cdot z=x) \rightarrow y=S(0) \vee y=x) .
$$

（d）$\rightarrow \notin Q(x, y) \rightarrow \exists z \forall y Q(y, z)$

$$
\begin{aligned}
& x=S(0) \cap(y-2=x) \rightarrow y=S(0) \cup y=x)) \\
& \text { ix } \alpha(x)+32 t y, Q(x)
\end{aligned}
$$

$$
\forall x \exists_{2}(Q(x, y) \rightarrow \forall y Q(y, z))
$$

$\forall x \exists_{2}\left(Q(x, y) \rightarrow \forall_{N} Q(\omega, z)\right)$
\leftarrow Alphabetic unorl．
Comments／concerns／questions／feedback to the instructor：

$$
\begin{aligned}
& \text { eestions/feedback to the instructor: } \\
& \forall x \exists z \forall \omega(Q(x, y) \rightarrow Q(w, z)) \in \text { Prenup!! } \\
& \exists z \forall \omega \forall x(Q(x, y) \rightarrow Q \mid w, z)) \\
& \exists z \forall x \forall w(Q(x, y)+Q(w, z))
\end{aligned}
$$

Math 160A - Fall 2021 - Class Work - In Lecture, November 23
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. Show that $P(x) \vdash Q(z) \rightarrow P(x)$.
2. Show $\forall x P(x) \vdash \forall y P(y)$.

$$
\begin{array}{ll}
f \forall x P(x) \rightarrow P(y) & \text { Arian' } \\
+\forall x P(x) \dashv \forall y P(y) & \text { Geuenclization: } \\
f \forall x P(x) & \text { Hypothes :- } \\
f \forall y P(y) & \text { MoP. }
\end{array}
$$

3. Show that $\vdash x=y \rightarrow y=z \rightarrow z=x$.

$$
\begin{aligned}
& f x=y \rightarrow y=z \rightarrow x=2 \\
& f x=2 \rightarrow z=x \\
& f x=y \rightarrow y=2 \rightarrow z=x
\end{aligned}
$$

Traaratioisy axioms.
Symmetry axemi.
TAunT
4. Let $A=A(x)$. Show that $\vdash A(t) \rightarrow \exists x A(x)$.

Tee. Shaw $f A(t) \neg \neg \forall x \neg A(x)$.

$$
\text { Suggest: Use }+\forall x \neg A(x) \rightarrow \neg A(+)
$$

- axon-

6 By Comtupuriton. $\quad+\rightarrow \neg A(f) \rightarrow \neg \forall x \neg A(x)$
Therefor $+A(x) \rightarrow \neg \forall \times \neg A(x)$.
Comments/concerns/questions/feedback to the instructor:

Math 160A - Fall 2021 - Class Work - In Lecture, November 30
(Hand in for the instructor to upload to Gradescope)
Name:
PID:

1. For each the following: Either (a) prove it has an FO proof (not using the Completeness Theorem), or (b) Prove it does not have FO-proof by giving a structure which falsifies it (that is, by using the Soundness Theorem).

- $\forall x(P(x) \rightarrow Q(x)) \rightarrow \forall x P(x) \rightarrow \forall x Q(x)$.
- $\exists x(P(x) \rightarrow Q(x)) \rightarrow \exists x P(x) \rightarrow \exists x Q(x)$.
- $\forall x(P(x) \rightarrow Q(x)) \rightarrow \exists x P(x) \rightarrow \exists x Q(x) \leftarrow$ Logically Nut logically valid
- $\exists x(P(x) \rightarrow Q(x)) \rightarrow \forall x P(x) \rightarrow \forall x Q(x)$.

Let $T=\forall x(P(x) \rightarrow Q(x)), \forall x P(x)$
So $\Gamma \vdash \forall x(P(x) \rightarrow Q(x))$
L $\Gamma+P(x) \rightarrow Q(x)$
$\forall x(P(x) \rightarrow Q(x))-P(x+1 \rightarrow O(x)$
Sin.laty, $T+P(x)$
By M.P TL $Q(x)$
By Gen $T+\forall_{x}(Q(x))$
$\frac{A}{t \times A} \quad \frac{c \rightarrow A}{C+\theta+A}$
Second one not logically ali. By Saradasss t does wot hove a procts

$$
\begin{aligned}
& |a|=\{0,1\rangle \\
& p^{e n}=\{\langle 0\rangle\} \\
& Q^{a}=\varnothing .
\end{aligned}
$$

Comments/concerns/questions/feedback to the instructor:

PL1: $A \rightarrow B \rightarrow A$
PL2: $(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$
PL3: $\neg A \rightarrow A \rightarrow B$
PL4: $(\neg A \rightarrow A) \rightarrow A$
EQ1: $x=x$
EQ2: $x=y \rightarrow y=x$
EQ3: $x=y \rightarrow y=z \rightarrow x=z$
$\mathrm{EQ}_{f}: y_{1}=z_{1} \rightarrow \cdots \rightarrow y_{k}=z_{k} \rightarrow f\left(y_{1}, \ldots, y_{k}\right)=f\left(z_{1}, \ldots, z_{k}\right)$
$\mathrm{EQ}_{P}: y_{1}=z_{1} \rightarrow \cdots \rightarrow y_{k}=z_{k} \rightarrow P\left(y_{1}, \ldots, y_{k}\right) \rightarrow P\left(z_{1}, \ldots, z_{k}\right)$
UI: $\forall x A(x) \rightarrow A(t)$.
MP: $A \rightarrow B, A / B$.
Gen: $C \rightarrow A / C \rightarrow \forall x A(x$ not free in $C)$

- $A \vee B, A \wedge B$, and $\exists x A$ stand for $\neg A \rightarrow B, \neg(A \rightarrow \neg B)$ and $\neg \forall x \neg A$.

