1. Suppose that $\Gamma \vDash p_{i}$ or $\Gamma \vDash \neg p_{i}$, for every i. Prove that, for every formula $A, \Gamma \vDash A$ or $\Gamma \vDash \neg A$. (This property of Γ is similar to being complete; however, instead of having one of A or $\neg A$ a member of Γ, we have one of A or $\neg A$ tautologically implied by Γ.)
2. Use the Compactness Theorem for propositional logic to prove that a graph is 3colorable if and only if every finite subgraph is 3 -colorable. (" 3 -colorable" means there is an assignment of three colors to the vertices of the graph so that no edge connects vertices assigned the same color.) For this, fix a graph G. Use propositional variables r_{i}, g_{i}, b_{i} whose intended meanings are that "Vertex i is red", "Vertex i is green", and "Vertex i is blue", respectively. Let Γ be a set of formulas using these variables that expresses the conditions that (a) each vertex has a color assigned to it, and (b) if two vectices i and j are joined by an edge in G, then they are not assigned the same color. The set Γ should be satisfiable if and only if G is 3 -colorable. Then apply the Compactness Theorem.

This is mostly a conceptual problem. Feel free to discuss this on piazza and discord. What to hand-in to be graded: Describe what formulas are in the set Γ in terms of the vertices and edges of G.

