
Math 155B — Computer Graphics — Spring 2020 Homework #6 — Due Tuesday, April 28, 9:00pm Hand in via Gradescope

Note that the multipart question 2 extends onto the second page.

1. Consider the knot vector [0,0,0,0,1,3,3,4,5,5,5,6,7,8,8,8,8] with 17 knots u_0,\ldots,u_{16} . E.g., $u_4=1$ and $u_7=4$ and $u_{11}=6$. Let this define a **degree** three B-spline curve $\mathbf{q}(u)$ with n+1 control points $\mathbf{p}_0,\ldots,\mathbf{p}_n$. Answer questions a.-i. below. You will need to make a copy of this graph:

- **a.** How many control points are needed for this curve? What is the value of n?
- **b.** What is the largest value i such that $N_{i,4}(u)$ is defined?
- **b.** What is the domain of the B-spline curve $\mathbf{q}(u)$?
- **c.** What is the support of $N_{0,4}$?
- **d.** Make a copy of the graph shown above. Draw and label the graph of $N_{0,4}$ on the graph.
- **e.** What is the support of $N_{4,4}$?
- **f.** What is the support of $N_{5,4}$?
- **g.** Draw and label the graph of $N_{5,4}$. You can do this on the same graph as used in part d.
- **h.** For what value ℓ (if any) is it guaranteed that $\mathbf{q}(u)$ is C^{ℓ} -continuous at u=3?
- i. For what pairs of integers i and j must it be that $\mathbf{q}(i) = \mathbf{p}_j$? (Explicitly list all of them.)
- **2.** Consider the knot vector [0,0,0,0,1,1,1,2,2,2,3,3,3,3] for a degree three B-spline curve \mathbf{q} .
 - **a.** The curve **q** uses control points $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{\ell}$. How many control points does this curve use? What is ℓ equal to?
 - **b.** How many blending functions $N_{i,4}(u)$ does this curve use?
 - c. What is the support of $N_{3,4}(u)$? What is the support of $N_{4,4}$? For full credit, correctly indicate whether the endpoints of the intervals of support are included in the supports.

- **d.** The B-spline curve **q** can be written as a union of Bézier curves of degree 3. How many Bézier curves are used, and what are their control points?
- **e.** Must the B-spline curve \mathbf{q} be continuous on the domain [0,3]? Must \mathbf{q} be C^1 -continuous on the domain [0,3]?
- **f.** The derivative \mathbf{q}' can be expressed as a B-spline curve of degree two. What is the knot vector for \mathbf{q}' ? Will the derivative $\mathbf{q}'(u)$ be well-defined and continuous for all u in the interval (0,3)? If not, at what values $u \in (0,3)$ might it not be well-defined and continuous?
- 3. Page 315 in the textbook (version B.i.k) shows three equations labelled (IX.7) for the blending functions $N_{1,3}(u)$, $N_{2,3}(u)$ and $N_{3,3}(u)$ for the knot vector 0,0,0,0,1,1,1,1. Carry out and show the work need to derive these three equations. [You may start with the equations for $N_{2,2}(u)$ and $N_{3,2}(u)$ as given in the text; all of the other functions $N_{i,2}(u)$ (for i=0,1,4,5) are equal to the constant zero function.]
- 4. Give a full acknowledgement of assistance. This includes anyone, any written source, any web site, etc., that helped you; and anyone you helped.