Name:
PID:

1. Let $\mathbf{u}=\langle 1,2,3\rangle$ and $\mathbf{v}=\langle 5,2,9\rangle$.
(a) What is $\operatorname{Lerp}\left(\mathbf{u}, \mathbf{v}, \frac{1}{3}\right)$?
(b) What is $\operatorname{Lerp}\left(\mathbf{v}, \mathbf{u}, \frac{2}{3}\right)$?
(c) What is $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, 1)$?
(d) What is $\operatorname{Lerp}(\mathbf{u}, \mathbf{v},-1)$?
(e) What value of α makes $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, \alpha)$ equal to $\left\langle 2,2, \frac{9}{2}\right\rangle$?
(f) Let L be the line containing \mathbf{u} and \mathbf{v}. Let $\mathbf{z}=\langle 1,2,9\rangle$. Find the value β such that $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, \beta)$ is the point on the line L that is closest to \mathbf{z}.
