Name:

PID:

- 1. Let $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle 5, 2, 9 \rangle$.
- (a) What is $Lerp(\mathbf{u}, \mathbf{v}, \frac{1}{3})$?
- (b) What is $Lerp(\mathbf{v}, \mathbf{u}, \frac{2}{3})$?
- (c) What is $Lerp(\mathbf{u}, \mathbf{v}, 1)$?
- (d) What is $Lerp(\mathbf{u}, \mathbf{v}, -1)$?
- (e) What value of α makes $Lerp(\mathbf{u}, \mathbf{v}, \alpha)$ equal to $\langle 2, 2, \frac{9}{2} \rangle$?

(f) Let L be the line containing **u** and **v**. Let $\mathbf{z} = \langle 1, 2, 9 \rangle$. Find the value β such that $Lerp(\mathbf{u}, \mathbf{v}, \beta)$ is the point on the line L that is closest to \mathbf{z} .