1. Let \(\mathbf{u} = (1, 2, 3) \) and \(\mathbf{v} = (5, 2, 9) \).

(a) What is \(\text{Lerp}(\mathbf{u}, \mathbf{v}, \frac{1}{3}) \)?

(b) What is \(\text{Lerp}(\mathbf{v}, \mathbf{u}, \frac{2}{3}) \)?

(c) What is \(\text{Lerp}(\mathbf{u}, \mathbf{v}, 1) \)?

(d) What is \(\text{Lerp}(\mathbf{u}, \mathbf{v}, -1) \)?

(e) What value of \(\alpha \) makes \(\text{Lerp}(\mathbf{u}, \mathbf{v}, \alpha) \) equal to \((2, 2, \frac{9}{2}) \)?

(f) Let \(L \) be the line containing \(\mathbf{u} \) and \(\mathbf{v} \). Let \(\mathbf{z} = (1, 2, 9) \). Find the value \(\beta \) such that \(\text{Lerp}(\mathbf{u}, \mathbf{v}, \beta) \) is the point on the line \(L \) that is closest to \(\mathbf{z} \).