Name: Answer Key
PID:

1. Let $\mathbf{u}=\langle 1,2,3\rangle$ and $\mathbf{v}=\langle 5,2,9\rangle$.
(a) What is $\operatorname{Lerp}\left(\mathbf{u}, \mathbf{v}, \frac{1}{3}\right) ?\left\langle\frac{7}{3}, 2,5\right\rangle$
(b) What is $\operatorname{Lerp}\left(\mathbf{v}, \mathbf{u}, \frac{2}{3}\right)$? $\left\langle 5,2, \frac{7}{3}\right\rangle$
(c) What is $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, 1) ?\langle 5,2,9\rangle$
(d) What is $\operatorname{Lerp}(\mathbf{u}, \mathbf{v},-1) ?\langle-3,2,-3\rangle$
(e) What value of α makes $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, \alpha)$ equal to $\left\langle 2,2, \frac{9}{2}\right\rangle$?

$$
\begin{aligned}
& \text { Solve: }\langle 2,2,9 / 2\rangle-\langle 1,2,3\rangle=\alpha(\vec{v}-\vec{u})=\alpha \cdot\langle 4,0,6\rangle \\
& \text { i.e., }\left\langle 1,0, \frac{3}{2}\right\rangle=\alpha\langle 4,0,6\rangle . \\
& \alpha=\frac{1}{4} \\
& \text { Alternately: } \alpha=\frac{\langle 2,2,9 / 2\rangle \cdot\langle 4,0,6\rangle}{\langle 4,0,6\rangle \cdot\langle 4,0,6\rangle}=\frac{8+18}{16+36}=\frac{26}{52}=\frac{1}{4}
\end{aligned}
$$

(f) Let L be the line containing \mathbf{u} and \mathbf{v}. Let $\mathbf{z}=\langle 1,2,9\rangle$. Find the value β such that $\operatorname{Lerp}(\mathbf{u}, \mathbf{v}, \beta)$ is the point on the line L that is closest to \mathbf{z}.

$$
\beta=\frac{(\vec{z}-\vec{u}) \cdot(\vec{v}-\vec{u})}{(\vec{v}-\vec{u}) \cdot(\vec{v}-\vec{u})}=\frac{36}{52}=\frac{9}{13}
$$

