1. A cone C has height 1 and its base has radius 1. The cone is positioned upright, centered around the y-axis. The apex (the top point) of the cone C is at $(0, 1, 0)$; the base of the cone is lying in the xz-plane; and the center of the base is at the origin.

A transformation f maps the cone C to have the following shape, centered on the x-axis with the apex of the cone at the origin, now with height equal 3 and base radius equal to $\frac{1}{2}$:

Express the transformation f as a composition of a translation T_u, a rotation $R_{\theta, v}$, and a non-uniform scaling $S_{(a, b, c)}$. (The composition may not necessarily be in that order!) Use the usual “\circ” notation to denote composition. There are many possible correct answers.

Most common answer: $T_{<3, 0, 0>} \circ R_{\pi/2, <0, 0, 1>} \circ S_{<\frac{1}{2}, \frac{3}{2}, \frac{1}{2}>}$

Other equally good, correct answers:

$T_{<3, 0, 0>} \circ S_{<3, \frac{3}{2}, \frac{3}{2}>} \circ R_{\pi/2, <0, 0, 1>}$

$S_{<3, \frac{3}{2}, \frac{3}{2}>} \circ R_{\pi/2, <0, 0, 1>} \circ T_{<0, 1, 0>}$

$S_{<3, \frac{3}{2}, \frac{3}{2}>} \circ T_{<1, 0, 0>} \circ R_{\pi/2, <0, 0, 1>}$

$R_{\pi/2, <0, 0, 1>} \circ S_{<\frac{3}{2}, 3, \frac{3}{2}>} \circ T_{<0, 1, 0>}$

$R_{\pi/2, <0, 0, 1>} \circ T_{<0, -3, 0>} \circ S_{<\frac{3}{2}, 3, \frac{3}{2}>}$.

Another correct answer:

$T_{<3, 9, 0>} \circ R_{\pi/4, <1, -1, 0>} \circ S_{<\frac{3}{2}, 3, \frac{3}{2}>}$

Many other correct answers are possible.