Earth/Solar system used perspective. Tents did not use perspective — instead used orthographic projections.

Recall Example from last lecture:

Height 2
Radius 1

cylinder centered at \(\hat{0} \)

Express \(f \) as a composition of scalings, translations, and rotations:

\[S < \frac{1}{2}, 2, \frac{1}{2} \]
Let's form f by: first scale, then rotate, then translate.

$$S_{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)}(C)$$

$C = \text{cylinder}$

$R_{\theta, \hat{u}} \cdot \text{rotates around axis } \hat{u} \text{ through } \hat{0}.

$$T_{<4,0,0>} \cdot \text{over the required translation.}$$

Express f as

$$T_{<4,0,0>} \circ R_{\theta, \hat{u}} \circ S_{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)}$$
In pseudocode:

\[
M := \text{Identity (ViewMatrix)}
\]

\[
M := M \cdot T(4,0,0)
\]

\[
M := M \cdot R_{90, x}
\]

\[
M := M \cdot S(\frac{1}{2}, 2, \frac{1}{2})
\]

* means matrix multiplication.

\[M\] is a 4x4 matrix.

Advantage of Multiplying on the right:

Supports hierarchical application of transformations.

In C++ Code:

\[
\text{M. Mult-gl Translate (4,0,0);}
\]

\[
\text{M. Mult-gl Rotate (\pi/2, 0,0,1);}
\]

\[
\text{M. Mult-gl Scale (1/2, 2, 1/2);}
\]
Let's f as by: First Rotate, then Scale, then Translate.

Rotate R_{90°

Scale $S_{(2,\frac{1}{2},\frac{1}{2})}$

then Translate $T_{(4,0,0)}$.
Now express f by scaling first, then translating, then rotating.

First:

$S(\frac{1}{2}, 2, \frac{1}{2})$

Translate:

$<0, 4, 0>$

Then rotate -90° around z axis:

$R_{-90, \hat{k}} = R_{90^\circ, -\hat{k}}$

Height:

2

Radius:

1
Example:

\[R_{180^\circ}, \vec{z} + \vec{k} \]

\[\vec{i} \rightarrow \vec{k} \]
\[\vec{j} \rightarrow -\vec{j} \]
\[\vec{k} \rightarrow \vec{i} \]

Theorem (Euler's): Any rigid, orientation-preserving map is equal to \(R_\theta, \vec{u} \) for some \(\theta, \vec{u} \).

Example: Let \(f \) be linear, permuting the axes, so that \(f(\vec{i}) = \vec{j} \) \(f(\vec{j}) = \vec{k} \) and \(f(\vec{k}) = \vec{i} \).
Express \(f \) as a rotation \(R\theta, \bar{u} \).

Take
\[
\bar{u} = i + j + k \quad \text{(or} \quad \frac{1}{\sqrt{3}} (i + j + k) \text{)}
\]

is a unit vector.

Take \(\theta = \frac{2\pi}{3} \) or \(120^\circ \).

Related theorem in \(\mathbb{R}^2 \)

Thus, any rigid, orientation-preserving affine map is either a generalized rotation or a translation.

\[y \begin{array}{c} \rightarrow \end{array} \Phi \bar{u} \]

\[\begin{array}{c} x \end{array} \]

Holds \(\bar{u} \) fixed. Rotates around \(\bar{u} \) angle \(\theta \) (in CCW direction).