Name: Answer Key

PID:

1. Let \(x = (-2, 0, 4) \) and \(y = (4, 6, -2) \) be points in \(\mathbb{R}^3 \). Let \(u = (-4, 0, 8, 2) \) and \(v = (12, 18, -6, 3) \) be homogeneous representations of \(x \) and \(y \) (respectively). Find scalars \(\alpha \) and \(\beta \) so that \(w = \alpha u + \beta v \) is a homogeneous representation of the midpoint of \(x \) and \(y \). In other words, \(w \) is an affine combination of \(u \) and \(v \), and a homogeneous representation of \(\frac{1}{2}(x + y) \).

\[
\alpha = \frac{3}{5}, \quad \beta = \frac{2}{5}
\]

(To solve this, just pay attention to the weights 2 and 3 of \(\tilde{u} \) and \(\tilde{v} \).

\[\uparrow\ \text{"} \alpha \text{" means proportional to}\]

Need \(\alpha \approx \frac{1}{3}, \beta \approx \frac{1}{3} \) and \(\alpha + \beta = 1 \).

2. A triangle in \(\mathbb{R}^2 \) has three vertices \(x = (0, 0), y = (3, 3) \) and \(z = (6, 0) \). The point \(a = (3, 1) \) has barycentric coordinates \(\alpha = \frac{1}{3}, \beta = \frac{1}{3} \), and \(\gamma = \frac{1}{3} \).

Let \(u = (2x; 2), v = (y; 1) \) and \(w = (2z; 2) \) be homogeneous representations of \(x, y \) and \(z \), respectively.

Find values \(\alpha', \beta', \gamma' \) so that the affine combination \(\alpha' u + \beta' v + \gamma' w \) is a homogeneous representation of \(u \).

\[
\alpha' = \frac{1}{y}, \quad \beta' = \frac{2}{y}, \quad \gamma' = \frac{1}{y}
\]

This was easy to solve since \(\alpha' = \beta' = \gamma' = \frac{1}{3} \).

Need \(\alpha' = \frac{\alpha/\omega_x}{\alpha/\omega_x + \beta/\omega_y + \gamma/\omega_z} \) and similarly \(\beta', \gamma' \).

Where \(\omega_x, \omega_y, \omega_z \) are the weights of \(\omega_x, \omega_y, \omega_z \).

Alternatively: \(\alpha' \propto \alpha/\omega_x, \beta' \propto \beta/\omega_y, \gamma' \propto \gamma/\omega_z \).