Math 155A — Computer Graphics — Winter 2020 Homework #5 — Due Monday, March 2, 5:30pm

Hand in via Gradescope — Use separate pages for each problem.

NOTE: The Homowork Assignment now has SIX (6) questions (see second page).

- **1.** Let $\mathbf{x}_1 = \langle -2, 0 \rangle$ and $\mathbf{x}_2 = \langle 4, 1 \rangle$. Let α control the linear interpolation (and linear extrapolation) from \mathbf{x}_1 to \mathbf{x}_2 by LERP $(\mathbf{x}_1, \mathbf{x}_2, \alpha)$.
 - (a) What points are obtained with α equal to -2, -1, 0, $\frac{1}{10}$, $\frac{1}{3}$, $\frac{1}{2}$, 1, $1\frac{1}{2}$ and 2? What value of α gives the point $\langle 2, \frac{2}{3} \rangle$? The point $\langle 16, 3 \rangle$? Graph your answers.
 - (b) What point **u** on the line containin \mathbf{x}_1 and \mathbf{x}_2 is the closest to the origin? Find the value α such that $\mathbf{u} = \text{LERP}(\mathbf{x}_1, \mathbf{x}_2, \alpha)$.
 - (c) Suppose the values for $f(\mathbf{x}_1) = -3$ and $f(\mathbf{x}_2) = 3$ have been set, and we wish to set other values for $f(\mathbf{z})$ by linear interpolation/extrapolation. What will this set $f(\langle 2, \frac{2}{3} \rangle)$ equal to?
- **2.** Let $\mathbf{u} = \text{Lerp}(\mathbf{x}, \mathbf{y}, \alpha)$.
 - (a) For what values of α must **u** be a linear combination of **x** and **y**?
 - (b) For what values of α must **u** be an affine combination of **x** and **y**?
 - (c) For what values of α must **u** be a weighted average of **x** and **y**?
- **3.** Let $\mathbf{x} = \langle 0, 1 \rangle$, $\mathbf{y} = \langle 2, 3 \rangle$, and $\mathbf{z} = \langle 3, 0 \rangle$ in \mathbb{R}^2 . Determine the points represented by the following sets of barycentric coordinates.

a.
$$\alpha = 0, \beta = 1, \gamma = 0.$$

b. $\alpha = \frac{2}{3}, \beta = \frac{1}{3}, \gamma = 0.$
c. $\alpha = \frac{1}{3}, \beta = \frac{1}{3}, \gamma = \frac{1}{3}.$
d. $\alpha = \frac{4}{5}, \beta = \frac{1}{10}, \gamma = \frac{1}{10}.$
e. $\alpha = \frac{4}{3}, \beta = \frac{2}{3}, \gamma = -1.$

Graph your answers along with the triangle formed by \mathbf{x} , \mathbf{y} , and \mathbf{z} .

4. Let, again, $\mathbf{x} = \langle 0, 1 \rangle$, $\mathbf{y} = \langle 2, 3 \rangle$, and $\mathbf{z} = \langle 3, 0 \rangle$. Determine the barycentric coordinates of the following points four points $\mathbf{u}_1 - \mathbf{u}_4$:

The figure also show a point labelled \mathbf{u}_5 . For the barycentric coordinates for \mathbf{u}_5 : Which of α, β, γ are positive? Which ones are negative? Which ones are zero? 5. Let x = (0,0), y = (4,0), z = (5,3), and w = (0,2), as shown in the figure. For each of the following values of α and β, what point is obtained by bilinear interpolation? (Give the coordinates of the points a.-d.) Then draw a copy of the quadrilaterial, and show the approximate locations of your four answers. (The value α gives the left-to-right direction; β the bottom-to-top direction.)

6. Suppose a surface patch $\mathbf{u}(\alpha, \beta)$ in \mathbb{R}^3 is defined by bilinearly interpolating from four vertices. Derive the following formulas for the partial derivatives of \mathbf{u} :

$$\frac{\partial \mathbf{u}}{\partial \alpha} = (1 - \beta)(\mathbf{y} - \mathbf{x}) + \beta(\mathbf{z} - \mathbf{w}) = \text{LERP}(\mathbf{y} - \mathbf{x}, \mathbf{z} - \mathbf{w}, \beta)$$
$$\frac{\partial \mathbf{u}}{\partial \beta} = (1 - \alpha)(\mathbf{w} - \mathbf{x}) + \alpha(\mathbf{z} - \mathbf{y}) = \text{LERP}(\mathbf{w} - \mathbf{x}, \mathbf{z} - \mathbf{y}, \alpha).$$

In addition, give the general formula for a normal vector to the patch at a point $\mathbf{u} = \mathbf{u}(\alpha, \beta)$. (It does **not** need to be a unit vector.)