Math 155A - Computer Graphics - Winter 2020

Homework \#5 - Due Monday, March 2, 5:30pm
Hand in via Gradescope - Use separate pages for each problem.
NOTE: The Homowork Assignment now has SIX (6) questions (see second page).

1. Let $\mathbf{x}_{1}=\langle-2,0\rangle$ and $\mathbf{x}_{2}=\langle 4,1\rangle$. Let α control the linear interpolation (and linear extrapolation) from \mathbf{x}_{1} to \mathbf{x}_{2} by $\operatorname{LERP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \alpha\right)$.
(a) What points are obtained with α equal to $-2,-1,0, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, 1,1 \frac{1}{2}$ and 2 ? What value of α gives the point $\left\langle 2, \frac{2}{3}\right\rangle$? The point $\langle 16,3\rangle$? Graph your answers.
(b) What point \mathbf{u} on the line containin \mathbf{x}_{1} and \mathbf{x}_{2} is the closest to the origin? Find the value α such that $\mathbf{u}=\operatorname{LERP}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \alpha\right)$.
(c) Suppose the values for $f\left(\mathbf{x}_{1}\right)=-3$ and $f\left(\mathbf{x}_{2}\right)=3$ have been set, and we wish to set other values for $f(\mathbf{z})$ by linear interpolation/extrapolation. What will this set $f\left(\left\langle 2, \frac{2}{3}\right\rangle\right)$ equal to?
2. Let $\mathbf{u}=\operatorname{LERP}(\mathbf{x}, \mathbf{y}, \alpha)$.
(a) For what values of α must \mathbf{u} be a linear combination of \mathbf{x} and \mathbf{y} ?
(b) For what values of α must \mathbf{u} be an affine combination of \mathbf{x} and \mathbf{y} ?
(c) For what values of α must \mathbf{u} be a weighted average of \mathbf{x} and \mathbf{y} ?
3. Let $\mathbf{x}=\langle 0,1\rangle, \mathbf{y}=\langle 2,3\rangle$, and $\mathbf{z}=\langle 3,0\rangle$ in \mathbb{R}^{2}. Determine the points represented by the following sets of barycentric coordinates.
a. $\alpha=0, \beta=1, \gamma=0$.
b. $\alpha=\frac{2}{3}, \beta=\frac{1}{3}, \gamma=0$.
c. $\alpha=\frac{1}{3}, \beta=\frac{1}{3}, \gamma=\frac{1}{3}$.
d. $\alpha=\frac{4}{5}, \beta=\frac{1}{10}, \gamma=\frac{1}{10}$.
e. $\alpha=\frac{4}{3}, \beta=\frac{2}{3}, \gamma=-1$.

Graph your answers along with the triangle formed by \mathbf{x}, \mathbf{y}, and \mathbf{z}.
4. Let, again, $\mathbf{x}=\langle 0,1\rangle, \mathbf{y}=\langle 2,3\rangle$, and $\mathbf{z}=\langle 3,0\rangle$. Determine the barycentric coordinates of the following points four points $\mathbf{u}_{1}-\mathbf{u}_{4}$:
a. $\mathbf{u}_{1}=\langle 2,3\rangle$.
b. $\mathbf{u}_{2}=\left\langle 1 \frac{1}{3}, 2 \frac{1}{3}\right\rangle$.
c. $\mathbf{u}_{3}=\left\langle\frac{3}{2}, \frac{3}{2}\right\rangle$.
d. $\mathbf{u}_{4}=\langle 1,0\rangle$.

The figure also show a point labelled \mathbf{u}_{5}. For the barycentric coordinates for \mathbf{u}_{5} : Which of α, β, γ are positive? Which ones are negative? Which ones are zero?
5. Let $\mathbf{x}=\langle 0,0\rangle, \mathbf{y}=\langle 4,0\rangle, \mathbf{z}=\langle 5,3\rangle$, and $\mathbf{w}=\langle 0,2\rangle$, as shown in the figure. For each of the following values of α and β, what point is obtained by bilinear interpolation? (Give the coordinates of the points a.-d.) Then draw a copy of the quadrilaterial, and show the approximate locations of your four answers. (The value α gives the left-to-right direction; β the bottom-to-top direction.)
a. $\alpha=0$ and $\beta=1$.
b. $\alpha=\frac{2}{3}$ and $\beta=1$.
c. $\alpha=\frac{1}{2}$ and $\beta=\frac{3}{4}$.
d. $\alpha=\frac{1}{3}$ and $\beta=\frac{2}{3}$.

6. Suppose a surface patch $\mathbf{u}(\alpha, \beta)$ in \mathbb{R}^{3} is defined by bilinearly interpolating from four vertices. Derive the following formulas for the partial derivatives of \mathbf{u} :

$$
\begin{aligned}
& \frac{\partial \mathbf{u}}{\partial \alpha}=(1-\beta)(\mathbf{y}-\mathbf{x})+\beta(\mathbf{z}-\mathbf{w})=\operatorname{LERP}(\mathbf{y}-\mathbf{x}, \mathbf{z}-\mathbf{w}, \beta) \\
& \frac{\partial \mathbf{u}}{\partial \beta}=(1-\alpha)(\mathbf{w}-\mathbf{x})+\alpha(\mathbf{z}-\mathbf{y})=\operatorname{LERP}(\mathbf{w}-\mathbf{x}, \mathbf{z}-\mathbf{y}, \alpha)
\end{aligned}
$$

In addition, give the general formula for a normal vector to the patch at a point $\mathbf{u}=\mathbf{u}(\alpha, \beta)$. (It does not need to be a unit vector.)

