Student ID:

Name:

CSE 167 - Intro to Computer Graphics - Fall 2004 Quiz #4 Answers — November 22 — Interpolation

1. Let $\mathbf{x} = \langle -2, 1, 0 \rangle$ and $\mathbf{y} = \langle 0, 1, -2 \rangle$.

- **a.** What is $Lerp(\mathbf{x}, \mathbf{y}, -1)$ equal to? Answer: $\langle -4, 1, 2 \rangle$.
- **b.** For what α is $Lerp(\mathbf{x}, \mathbf{y}, \alpha) = \langle -\frac{1}{2}, 1, -1\frac{1}{2} \rangle$? Answer: $\alpha = \frac{3}{4}$.

2. A triangle has vertices $\mathbf{x}, \mathbf{y}, \mathbf{z}$ as shown. Also shown are seven points $\mathbf{u}_1 - \mathbf{u}_7$. For the following choices of barycentric coordinates indicate which point has those coordinates.

- **a.** $\alpha = 1, \beta = 0, \gamma = 0.$ Answer: **x**.
- **b.** $\alpha = \frac{1}{2}, \beta = 0, \gamma = \frac{1}{2}.$ Answer: \mathbf{u}_7 .
- **b.** $\alpha = \frac{1}{6}, \beta = \frac{2}{3}, \gamma = \frac{1}{6}.$ Answer: \mathbf{u}_3 .

3. A quadrangle has vertex \mathbf{u} , \mathbf{v} , \mathbf{w} , \mathbf{x} as shown. Give the formula for the point which is found using bilinear interpolation with $\alpha = \frac{1}{2}$ and $\beta = \frac{1}{3}$. Your formula should not involve α and β , instead use the particular values for α and β . (Remark: Here the point \mathbf{u} is found $\alpha = 0, \beta = 0$ and the point \mathbf{v} with $\alpha = 1, \beta = 0$.)

Answer: $\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v} + \frac{1}{6}\mathbf{x} + \frac{1}{6}\mathbf{y}$.