CSE 167 - Intro to Computer Graphics - Fall 2004

Quiz \#4 Answers - November 22 - Interpolation

1. Let $\mathbf{x}=\langle-2,1,0\rangle$ and $\mathbf{y}=\langle 0,1,-2\rangle$.
a. What is $\operatorname{Lerp}(\mathbf{x}, \mathbf{y},-1)$ equal to? Answer: $\langle-4,1,2\rangle$.
b. For what α is $\operatorname{Lerp}(\mathbf{x}, \mathbf{y}, \alpha)=\left\langle-\frac{1}{2}, 1,-1 \frac{1}{2}\right\rangle$? Answer: $\alpha=\frac{3}{4}$.
2. A triangle has vertices $\mathbf{x}, \mathbf{y}, \mathbf{z}$ as shown. Also shown are seven points $\mathbf{u}_{1}-\mathbf{u}_{7}$. For the following choices of barycentric coordinates indicate which point has those coordinates.
a. $\alpha=1, \beta=0, \gamma=0$.

Answer: x.
b. $\alpha=\frac{1}{2}, \beta=0, \gamma=\frac{1}{2}$.

Answer: \mathbf{u}_{7}.
b. $\alpha=\frac{1}{6}, \beta=\frac{2}{3}, \gamma=\frac{1}{6}$.

Answer: \mathbf{u}_{3}.
3. A quadrangle has vertex $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$ as shown. Give the formula for the point which is found using bilinear interpolation with $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{3}$. Your formula should not involve α and β, instead use the particular values for α and β. (Remark: Here the point \mathbf{u} is found $\alpha=0, \beta=0$ and the point \mathbf{v} with $\alpha=1, \beta=0$.)

Answer: $\frac{1}{3} \mathbf{u}+\frac{1}{3} \mathbf{v}+\frac{1}{6} \mathbf{x}+\frac{1}{6} \mathbf{y}$.

