CSE 167 - Intro to Computer Graphics - Fall 2004

Quiz \#1 Answers - October 21 - Transformations in \mathbb{R}^{2}

You must show your work in order to get credit for a problem. Label your answers clearly.

The figure above shows a transformation A that maps a figure " F " from standard position at the origin to the position shown on the right. The transformation is a generalized rotation around the point $\langle 0,1\rangle$.
1.Suppose there is a C routine $\operatorname{drawF}()$ that draws the "F" centered at the origin as shown in the left figure. Give a sequence of psuedo-OpenGL commands that will draw the " F " in the position shown in the figure on the right. For full credit, use as few pseudo-OpenGL commands as possible.

```
Answer: glMatrixMode( GL_MODELVIEW );
    glLoadIdentity();
    pglTranslatef(1,1);
    pglRotatef(90);
    drawF();
```

2. Express the transformation that maps the " F " on the left to the " F " on the right, in the form $A(\mathbf{x})=M \vec{x}+\mathbf{u}$, where M is a 2 x 2 matrix and $\mathbf{u} \in \mathbb{R}^{2}$.

Answer: $A(\mathrm{x})=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \mathrm{x}+\binom{1}{1}$.
3. Give a $3 x 3$ homogeneous matrix that represents the inverse of the above transformation.

Answer: $\quad\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$.

