CSE 167 - Intro to Computer Graphics - Fall 2004

Homework #2 This homework is not to be handed in. Selected answers are included on the last page

- 1. Suppose the earth is to be drawn at the origin and it is to rotate on its axis at a rate of ω degrees per unit time. The axis of rotation is to be the *y*-axis. Give the OpenGL commands that will set the model view matrix correctly to render the earth at time *t*. *Hint: Your answer will need to include a rotation through an angle of* ωt degrees.
- 2. Suppose the sun is positioned at the origin and the earth is revolving around the sun at a rate of ω degrees per unit time and at a distance of 5 units. Also suppose same side of the earth is always facing the sun. The earth always stays in the *xz*-plane. Give the OpenGL commands that will set the model view matrix correctly to render the earth at time *t*. Hint: Your answer will need to include a rotation through an angle of ωt degrees.
- **3.** Let $\mathbf{u} = \langle 0, 1, 0 \rangle$. Consider the rotation $R_{90^\circ, \mathbf{u}}$. Give a 4×4 homogeneous matrix that represents $R_{90^\circ, \mathbf{u}}$.
- 4. What will the model view matrix equal after the following OpenGL commands?

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRotatef(90.0,0,1,0); glRotatef(90.0,0,0,1);

What will it equal after the commands:

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRotatef(90.0,0,0,1); glRotatef(90.0,0,1,0);

5. Let M be the matrix

 $\left(\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$

Let $A(\mathbf{x})$ be the transformation of \mathbb{R}^3 defined by $A(\mathbf{x}) = M\mathbf{x}$. Give a sequence of OpenGL commands that will cause the same effect as the transformation A (without explicit loading the entries of the matrix!). *Hint: it can be done fairly easily using two rotations.*

6. Let A and M be as in the previous problem. Redo question 4., but use only a single rotation. This is mathematically equivalent to expressing A in the form $A = R_{\theta, \mathbf{u}}$ where \mathbf{u} is a unit vector. *Hint: You can find* \mathbf{u} without any hard calculations by using symmetry. The value of θ can be found from the fact that $A \circ A \circ A$ is equal to the identity transformation.

Selected answers

1. The following commands can be used:

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef( \u03c6 t, 0, 1, 0);
drawEarth();
```

2. The following commands can be used:

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRotatef(\u03c6t, 0, 1, 0); glTranslatef(5, 0, 0); drawEarth();

4. The matrices are different! They are

$\int 0$	0	1	0 \	and	1	0	-1	0	0 \
1	0	0	0			0	0	1	0
0	1	0	0			-1	0	0	0
$\int 0$	0	0	1 /		$\left(\right)$	0	0	0	1 /

You should try visualizing the effects of these transformations and understand why they are different.

5. Further hint: One way to achieve this transformation is with a 90 degree rotation around the z-axis, followed by a 90 degree rotation around the y-axis.