
Avoiding some floating point pitfalls
Sam Buss

October 18, 2004

For the programming project #3 assignment, you will need to create a
surface of rotation. This will require writing loops that draw all the vertices;
indeed, you will have an outer loop that loops over all quad strips and an
inner loop that outputs all the vertices of the quad strip. Likewise, you will
need a loop that generates the vertices of the triangle fan.

The purpose of this note is to discuss some potential pitfalls. The short
moral is: Do not use floating point variables to control the stopping
condition of a loop.

Suppose you need to generate equally spaced real values that split the
internal [0, 2π] into equal length intervals. To begin with, here is a very bad
piece of code:

1. Bad code:
float x;

for ( x = 0.0; x!=2.0*PI; x += 2.0*PI/MeshCount ) {
// Use the value of x here.

}
For the above code, PI is a floating point value defined elsewhere. Also,

MeshCount is a small positive integer value defined elsewhere.
The problem with the above code is that, due to floating point roundoff,

the value 2.0*PI/MeshCount will not be exactly correct with the exception
of values of MeshCount that are powers of sixteen. Thus, x may never exactly
equal 2.0*PI, and the loop will never exit!

A slightly better piece of code is next, but this is still bad:

2. Bad code:
float x;

for ( x = 0.0; x<2.0*PI; x += 2.0*PI/MeshCount ) {
// Use the value of x here.

}
This second sample code will at least always terminate. However, due to

roundoff errors, after MeshCount iterations, x will sometimes be slightly less
than 2.0*PI and sometimes slightly more than 2.0*PI. In the former case,
the loop will do one more iteration than expected.

A better method is to use an integer variable to control the loop parameter.
For example:

1



3. Good code:
float x = 0.0;

for ( int i = 0; i<MeshCount; i++ ) {
x += 2.0*PI/MeshCount;

// Use the value of x here.

}

For the loops in the class programming assignments, the loop will probably
include the last value 2π and will actually use the value sin(x) and cos(x).
The first thing you might try is:

3. Fair code:
float x = 0.0;

for ( int i = 0; i<=MeshCount; i++ ) {
x += 2.0*PI/MeshCount;

float sinX = sin(x);

float cosX = cos(x);

// Use the values of sinX and cosX here.

}

We called this “fair” code since it might appear to work correctly if you
test it lightly, but it will still have problems in some cases. The problem is
that, due to roundoff errors, x, will not end up exactly equal to 2π , and then
for the last iteration of the loop, sinX and cosX will not have the desired
values of 0 and 1. If these wrong values are used to draw a vertex with
glVertex, then the vertex may end up on a wrong pixel, and leave a visible
gap in the surface of revolution.

A better way to to write this code is:

3. Good code:
float x = 0.0;

for ( int i = 0; i<=MeshCount; i++ ) {
x = (i%MeshCount)*2.0*PI/MeshCount;

float sinX = sin(x);

float cosX = cos(x);

// Use the values of sinX and cosX here.

}

This code uses i%MeshCount so that x will be exactly zero when i equals
MeshCount.

2


