1. An affine transformation $A(x) : \mathbb{R}^2 \to \mathbb{R}^2$ maps the "F"-shape on the left to the "F" on the right.

- **a.** Give a 3×3 matrix that represents A over homogeneous coordinates.
- **b.** Give a 3×3 matrix that represents A^{-1} over homogeneous coordinates.
 - 2. Consider the following sequence of OpenGL commands:

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRotatef(180.0, 1, 0, 0); glRotatef(90.0, 0, 0, 1); glScalef(2, 2, 2); glTranslatef(3, 4, 5);

Show explicitly the contents of the 4×4 ModelView matrix after these commands have been executed.

• \mathbf{u}_{12} v 5. A triangle is shown with vertices \mathbf{x} , \mathbf{y} and \mathbf{z} . Also shown are 12 points • **u**₈ \mathbf{u}_3 $\mathbf{u}_1,\ldots,\mathbf{u}_{12}$. In each of (a)-(d) the barycentric \mathbf{u}_9 \mathbf{u}_5 coordinates of a point are \mathbf{u}_6 given. In each case, write \mathbf{u}_2 \bullet on the blank line which \mathbf{Z} • \mathbf{u}_{11} point has those barycen- \mathbf{u}_4 tric coordinates. U1 • u₇

a. $\alpha = 1, \ \beta = 0, \ \gamma = 0$ is which point? ______ **b.** $\alpha = 0.1, \ \beta = 0.8, \ \gamma = 0.1$ is which point? ______ **c.** $\alpha = -0.1, \ \beta = -0.1, \ \gamma = 1.2$ is which point? ______ **d.** $\alpha = 0.6, \ \beta = 0.6, \ \gamma = -0.2$ is which point? ______ **6.** A color is specified with RGB values R = 0.9, G = 0.6, and B = 0.3. Give the HSL representation of this color.

7. Consider the following non-planar quadrangle.

Give explicitly the points that have the following bilinear coordinates with respect to this quadrangle.

- (a) $\alpha = 0$ and $\beta = \frac{1}{2}$.
- (b) $\alpha = 1$ and $\beta = 1$.
- (c) $\alpha = \frac{1}{3}$ and $\beta = \frac{1}{2}$.

10. Describe bump mapping. Explain in English what it does, and how/why it works. (You do not need to give detailed mathematical formulas for bump mapping unless you think will help explain the concepts.)

11. Describe the difference between between sphere-mapped environment map (that uses a sphere projection), and a cube-mapped environment map (that uses a box projection). What are their relative advantages?