1. An affine transformation $A(x): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ maps the " F "-shape on the left to the "F" on the right.

a. Give a 3×3 matrix that represents A over homogeneous coordinates.
b. Give a 3×3 matrix that represents A^{-1} over homogeneous coordinates.
2. Consider the following sequence of OpenGL commands:
```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef( 180.0, 1, 0, 0 );
glRotatef( 90.0, 0, 0, 1 );
glScalef( 2, 2, 2 );
glTranslatef( 3, 4, 5 );
```

Show explicitly the contents of the 4×4 ModelView matrix after these commands have been executed.
5. A triangle is shown with vertices \mathbf{x}, \mathbf{y} and \mathbf{z}. Also shown are 12 points $\mathbf{u}_{1}, \ldots, \mathbf{u}_{12}$. In each of (a)-(d) the barycentric coordinates of a point are given. In each case, write on the blank line which point has those barycentric coordinates.

a. $\alpha=1, \beta=0, \gamma=0$ is which point? \qquad
b. $\alpha=0.1, \beta=0.8, \gamma=0.1$ is which point? \qquad
c. $\alpha=-0.1, \beta=-0.1, \gamma=1.2$ is which point? \qquad
d. $\alpha=0.6, \beta=0.6, \gamma=-0.2$ is which point? \qquad
6. A color is specified with RGB values $R=0.9, G=0.6$, and $B=0.3$. Give the HSL representation of this color.
7. Consider the following non-planar quadrangle.

Give explicitly the points that have the following bilinear coordinates with respect to this quadrangle.
(a) $\alpha=0$ and $\beta=\frac{1}{2}$.
(b) $\alpha=1$ and $\beta=1$.
(c) $\alpha=\frac{1}{3}$ and $\beta=\frac{1}{2}$.
10. Describe bump mapping. Explain in English what it does, and how/why it works. (You do not need to give detailed mathematical formulas for bump mapping unless you think will help explain the concepts.)
11. Describe the difference between between sphere-mapped environment map (that uses a sphere projection), and a cube-mapped environment map (that uses a box projection). What are their relative advantages?

