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SUMMARY

Davison et al. (1986) have shown that finite bootstrap simulations can be improved by forc-
ing balance in the aggregate of simulated data sets. Their methods yield first-order balance,
which principally affects bootstrap estimation of bias. Here we extend the methodology to
second-order balance, which principally affects bootstrap estimation of variance. The par-
ticular techniques involve Latin square and balanced incomplete block designs. Numerical
examples are given to illustrate both the positive and the negative features of the balanced
simulations.
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1. INTRODUCTION

Bootstrap simulations are used to approximate sampling characteristics, such as bias
and variance, of statistical measures when the form of data distribution is wholly or
partly unknown; a useful introductory account of bootstrap methods has been given
by Efron and Tibshirani (1986). The number of simulated samples required for
accurate approximation may be in the hundreds or even thousands, unless special
Monte Carlo techniques are used. In this paper we discuss the use of systematic
resampling in reduction of the size of the simulation. Our work builds on previous
work by Therneau (1983), Davison et al. (1986) and an unpublished manuscript by
S. M. Ogbonmwan and H. P. Wynn.

The basic problem may be described as follows. A random samplex = (x,, . . ., X;)
is drawn from a population with distribution function F for x, and the statistical
estimate T = #(x) of 6 is computed. We are now interested in approximating the distri-
butional properties of T, or of some related quantity. This we do by substituting an
estimate F for F. When nothing is assumed about F, we take £to be the empirical dis-
tribution function

F(x)=n-! Z I(x - x;),

i=1

where I(u) =0, u < 0, and I(u)=1, u > 0. Thus F puts probability n-! on each X;.
It is usually impossible to execute exact theoretical calculation of the properties
of interest, and one practical solution is to use simulation. Thus, if we wish to
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approximate the distribution function of T, we can generate B samples x§ = (x5,

s x,,,,) drawn from F by random sampling, calculate the analogous estimate £ from
dataxj and then approximate Pr(T < a) by the proportion of #*s which are no greater
than a. This approximation involves two stages. First, if the true distribution function
of T'under sampling from F is written Pr(7T < a|F), then we are using the statistical
approximation

Pi(T < a|F) = PH(T < a|F). (1.1
Secondly, Pr(T < alﬁ ) is being approximated numerically by
PT < a|F) = B! S I(a - t}). 1.2)

In this paper we are concerned only with the error in the second approximation
(1.2). The practical importance of this error will usually depend on the possible
magnitude of error in approximation (1.1).

It is helpful to consider statistics 7of the form t(F), which estimate 8 = #(F), so that
quite generally T possesses the expansion

t(F)=t(F)+n-' 3 L(x; F) + 3n~2 £% Q(x;, X3 F) + . (1.3)

Here L and Q are the first and second functional derivatives of ¢, L belng more usually
called the influence function of ¢. Similar expansions will usually be available for
related quantities of interest, such as (T'— 6)/S, where S is a standard error of the
form n-1/2 s(F). See, for example, Hinkley and Wei (1984). Expansion (1.3) can be
used explicitly or implicitly in various ways to improve on the simulation procedure
mentioned earlier; see Davison et al. (1986). Here, however, we shall restrict attention
to implicit use of expansion (1.3) in alternatives to simple random sampling from F.

Section 2 introduces the concept of balanced samples x* and briefly reviews
relevant aspects of recent literature. Section 3 describes strategies for obtaining exact
or approximate balance to second order, which would ensure correct calculation of
bias and variance of T* to order n-!, for example. Numerical illustrations are given in
Section 4.

2. BALANCED SAMPLES

When x* is obtained by simple random sampling from empirical distribution func-
tion F, we can Iepresent the simulated value 7* = #(x*) based on x* = (x¥, ..., x*) by
t(F*), where F* is the empirical distribution function of x*. Then expansion (1.3)
applies to T*, by writing F* and F respectively in place of Fand F, so that

T*=T+n ' SLF+3n 255 Q%+..., @.1)

with L¥ = L(x}; F), Of = Q(x¥, x¥; F) and so forth.
There are two ways to relate L, Q%, etc. to the original sample values. One way is
to define f* to be the frequency of x; in x*, so that expansion (2.1) can be written

T*=T+n 'S ffLi+3n 2 I3 f* fEQu+ ... 2.2)

with L; = L (x;, F), and so forth. Efron (1979) introduced the f¥* in bootstrap theory
and noted that £* = (fF,..., ) follows the n-category uniform multinomial distri-
bution. Davison ef al. (1986) noticed that, when B random samples x} are taken,
random variation in the f* will produce a random approximation of bias
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E(T*) — E(T) which is of order B~!2 even for unbiased linear statistics such as
T = p-! X x;, but that this first-order error is removed by forcing

B
Z fbi=B-
b=1

This “first-order balance’ condition, that each x; occurs B times in the aggregate
simulation, can be achieved by random permutation of B copies of x.

Example 1. A design for n =5 and B = 10 is obtained by writing down 10 copies
of the sample subscripts 1-5, then randomly permuting this string of 50 integers:

50 integers which are 10 copies of original subscripts
12345123451234512345123451234512345123451234512345
random permutation of above integer string
32125355221455345511441331412213534313254422314254.

Successive blocks of five in this permuted string are the data subscripts for succes-
sive bootstrap samples, as shown in Table 1. Thus the first bootstrap sample is
(X3, X2, X1, X2, x5)°

The second way of relating expansion (2.1) to x is to write x* = x;(;, where £(i) is
randomly drawn from {1, 2, ..., n}. This representation is due to S. M. Ogbonmwan
and H. P. Wynn. Expansion (2.1) is now written

T*va'("'n_l ZZE(J)'F%’Z_Z ZZ é&(])i(k)-’-"" (2.3)

The B successive samples are determined by the B X n matrix £ with elements £(b, i),
b=1,...,B,i=1,...,n. The first-order balance referred to earlier is achieved by
arranging that each column of £ contains each of the integers 1, . . . , n with equal fre-
quency. Thus, for B = n, the matrix is a randomized block design with treatment
labels 1, ..., n and with columns as blocks. For B = kn, k randomized block designs
are stacked on top of each other.

TABLE 1
Random permutation design for n=5, B=10;
D, min — 5
Sample i
b 1 2 3 4 5
1 3 2 1 2 5
2 3 S 5 2 2
3 1 4 5 5 3
4 4 5 5 1 1
5 4 4 1 3 3
6 1 4 1 2 2
7 1 3 5 3 4
8 3 1 3 2 5
9 4 4 2 2 3
10 1 4 2 5 4
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TABLE 2
Randomized block design of sample subscripts, n = 5
andB=10; D, =4

Sample i
b 1 2 3 4 5
1 3 2 4 5 3
2 4 3 3 2 4
3 2 4 5 1 2
4 1 1 2 3 5
5 5 5 1 4 1
6 5 2 4 4 5
7 4 3 5 2 2
8 2 5 3 5 3
9 3 4 2 1 4
10 1 1 1 3 1

Example 2. For n=35 and B = 10, two randomized block designs are coupled as
in Table 2.

The balanced § design is necessarily balanced in terms of f*. To see this, first
observe that

=28~ £, J))
J=1

with 6(k) = 0 or 6(k) = 1 according to whether k£ # 0 or k= 0. Then, for all i,

n B
=1

B
Zfbi=2
b=1

j=1b

SG—£(,j) =3 Bn-1=B.
j=1

Evidently the £ design contains redundancy for symmetric statistics for which only the
ordered values x of x* are required. However, the column-by-column balance of the
£ design is useful in more complicated situations.

Example 3. Consider the regression model x; = 8w, + ¢;, with homogeneous zero-
mean errors ¢;. Let

T=ZXZx;w/Zwl

Here F denotes the error distribution, and we take Ftobethe empirical distribution of
centred residuals e; = e; — e with e; = x; — tw; and e = n~! Z ¢;. Bootstrap samples are
defined by

xi*=tw,-+e,-’*=tw,-+e§(,~), i=1,...,n.
Therefore the mean of T is approximated by

B B n n
B! Z t¥=RB"1 Z Z (tw,-+eg’(b,,-))w,-/ wjz
b=1 b

=1 i=1 j=1
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B n n
=t+B7! > >} Wieé(b,i)/z w}
5 i=1

=1 i=1

n B n
=1+, (B_l > eé(b,o) w,-/Z wh,
i=1 b=1 i=1

whichequals¢t=FE (Tlf )Yonlyif %, e} , = 0foralli, and not necessarily if & f = B.

The balanced f* design does not require that B be a multiple of #, but this is a
negligible practical advantage. Asto computation time, the f* design takes somewhat
longer, but with efficient programming (Gleason, 1988) the increase may be less than
50% more than for the unbalanced design.

In a general approach to choice of £, numerical error in approximations such as
equation (1.2) can be related to properties of £ via representations such as expansion
(2.3). If we consider the Brows of £ as points in # dimensions, then the design is said to
be rth order balanced if all r-dimensional margins formed by taking r columns of ¢
have uniform distributions on the n” possible values. The randomized block designs,
such as in Table 2, satisfy this condition for r = 1. L

Now if the property of T of interest is being approximated by E {v(F*)| F}, then the
simulation error would be removed if the expansion of form (2.3) for v(F) has zero
components beyond the (r + 1)st term and if ¢ is rth order balanced. For example,
suppose that we are approximating var(7), which involves v(F*) = {¢(F*) — t(F)}2,
for which the Q terms in its expansion are not zero. Then first-order balance will not
remove simulation error.

A corresponding notion of rth-order balance for the f* design is that r~-dimensional
margins formed by any r columns of the B x n f* table match the r-dimensional
margins of the n-dimensional uniform multinomial distribution. The particular
property on which we shall focus attention is that the rth-order sample moments of f*
match the corresponding multinomial moments.

From previous work it is clear that first-order balance need not appreciably reduce
that part of the simulation error due to second-order imbalance. In the unpublished
work by S. M. Ogbonmwan and H. P. Wynn it is shown by example that it is wise to
screen first-order designs on the basis of deviation from higher order balance. Their
method of screening is to push the rows of £ apart by setting a minimum value for the
distance

D=3} {6, D-£@, NP

between any pair of rows b and b’. Minimum values of D are recorded in Tables 1
and 2.

In the next section we describe and illustrate some ways of constructing second-
order balanced designs. Applications of various designs are discussed in Section 4.

3. SECOND-ORDER BALANCED BOOTSTRAP DESIGNS

Careful examination of approximation (2.3) for an estimate 7 shows that its mean
and variance can be approximated without simulation error to terms of order n-! if
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the £ or f* design is second order balanced; balance in £ is necessary if T is not
symmetric in the xs. We now describe two methods of constructing second-order
balanced designs.

First, consider the ¢ design. Second-order balance requires that all #2 values of
(&(b, i), £(b, j)) occur with equal frequency for any pair of columns i, j. Thus the
minimal design has B = n2. Such designs were referred to by Bose and Bush (1952)
as orthogonal arrays of strength 2. Two columns of £, which we take to be the first
two columns, canbe (1,...,1,2,...,2,...,n,...,n)and (1,2,...,n,..., 1,
2, ..., n). Forany other column j, the equal bivariate frequency condition is satisfied
in conjunction with columns i = 1 and i = 2 if the elements £ (b, j) correspond to those
in a Latin square with ‘treatment’ alphabet (1,2, ..., n), ‘row’ £(b, 1) and ‘column’
£(b, 2). If the same is to be true for columns j =3, .. ., n then each must correspond
to a Latin square. Further, the successive Latin squares must be orthogonal if the
equal bivariate frequency condition is always to be satisfied. A complete design there-
fore requires n — 2 orthogonal Latin squares, which are available only if 7 is a power
of a prime number. For relevant details see Fisher and Yates (1957).

Example 4. Table 3 shows an example design for » =35, B=25. Within any
column, integers 1,..., n can be replaced by any permutation thereof. In this

TABLE 3
Second-order balanced £ design based on orthogonal
Latin squares forn = 5Sand B=25; D, = 4

Sample i
b 1 2 3 4 5
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 1 5 5 5 5
6 2 1 2 3 4
7 2 2 3 4 5
8 2 3 4 5 1
9 2 4 5 1 2
10 2 5 1 2 3
11 3 1 3 5 2
12 3 2 4 1 3
13 3 3 5 2 4
14 3 4 1 3 5
15 3 s 2 4 1
16 4 1 4 2 5
17 4 2 5 3 1
18 4 3 1 4 2
19 4 4 2 5 3
20 4 s 3 1 4
21 5 1 5 4 3
22 5 2 1 5 4
23 5 3 2 1 5
24 5 4 3 2 1
25 5 5 4 3 2
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way extreme rows, such as the first row of Table 3, can be avoided. This raises
the possibility that some Latin square designs may be better than others; see
Section 4.

The Latin square ¢ design is second order balanced with respect to f* also. To see
this, observe that

DISESE=D DD 0 —EB, D) S(j—E(B,m) =n(n—1), i #J,
b { m b
and

2 1% 226(1— EB, D)+ >, >80~ £(b, D) (i — £(b, m))
b

I+m b
=n2+n(n - 1).

Therefore, because B = n2,
IZf fr=08(i—j)+1—n-! 3.1

in agreement with the multinomial expectation E(f* f* Iﬁ ).

As with first-order balance, balance of f* is a weaker property and will be adequate
for symmetric statistics. But balance of ¢ will work also for non-symmetric statistics,
as the following extension of example 3 illustrates.

Example 5. The bootstrap estimate of var(7T) is

B~ Z(t*—’)Z‘B ZZZ Wwes(bz)ez(b/)/< W)2
= Z,: 41\__: Wi Wj (B_l zb\__‘a € 6,08 o, 1))/ > Wiz)z
= {Z win=1 > e+ D w,~wj(n—l 2e>2}/<2 w,~2)2

i#j

52/% w? = var(T|F),

where 62=n-1X ¢/

The exact second-order balance of & requires B > n%, but corresponding
balance of f* may be possible for much smaller values of B and hence provide more
economical designs for symmetric statistics. We now describe such designs.

We have found that second-order balance of f* can be obtained by regarding the
construction as a problem in incomplete block designs, which leads to the use of
Bose’s method of differences (Bose, 1939; Bose and Bush, 1952). The problem is also
a special case of what are termed n-ary block designs in the more recent combinatorics
literature. Billington (1984) gives a detailed account which is relevant to much of the
discussion in this section. We regard the rows of £ as blocks, with treatment labels
1,...,ntobeallocated within blocks. The objective then is a design for n treatments
in B = kn blocks, each of size n, satisfying the conditions
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B

*2 = k(2n - 1),

>

=1

. (3.2)
D fEfE=k(n— 1)

b=1

cf. equation (3.1).

J#%is an element of the transpose of the incidence matrix N of the design. Condition
(3.2) implies that the diagonal elements of the concordance matrix NN’ are all equal to
k(2n — 1) and that off-diagonal elements are all equal to k(n — 1). Our designs will
thus be balanced in the traditional sense, except that they will be non-binary because
Jf# can exceed unity. _

In deriving the designs we replace the treatment labels 1, 2,..., n by
0,1,...,n— 1. Wechoose £ initial blocks and develop each of them into a cycle of »
blocks by adding, in turn, 1,2,...,n — 1 and reducing the values mod n. Following
Bose (1939) we choose the initial blocks in such a way that each non-zero difference
occurs among all of them in exactly k(n — 1) ways; it will follow that there will also be
k(n — 1) zero differences.

Some of these designs can be obtained by using balanced incomplete block designs
to provide the initial blocks. Other designs may be obtained by trial and error, as was
used for the following example.

Example 6. For n =5 adesign with B = 151is constructed from k = 3 initial blocks
©,1,2,3,4),(0,0,0, 1, 3)and (0, 0, 0, 1, 2). To see that this works, we apply Bose’s
method to obtain differences 1-0, 0-1 =4, ... in the first block, and so forth. The
complete table of frequencies of differences is given in Table 4. The full ¢ design is
obtained by cycling the initial blocks and adding 1 to each entry, with the result given
in Table 5.

An even smaller design exists with B = 10, using initial blocks (0, 0, 1, 2, 3) and
(0, 0, 0, 1, 2). For this design D,,;, = 3.

For certain special values of n and B, we can use balanced incomplete block designs
as bases for £. First, if n = 2m is even, then we start with a balanced incomplete block
design &, for n treatments in r blocks of size m. The bthrow of £ consists of the bth row
of §{, duplicated, b= 1, ..., r. The remaining s = B — r rows of ¢ contain each treat-

TABLE 4
Frequencies of differences

Difference
0 1 2 3 4
Initial block 1 0 5 5 5 5
Initial block 2 6 3 4 4 3
Initial block 3 6 4 3 3 4

Total 12 12 12 12 12
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TABLE 5
Balanced cyclic design from three blocks for n = 5,
B =15 Dy, =1
Sample i
b 1 2 3 4 5
1 1 2 3 4 5
2 2 3 4 5 1
3 3 4 5 1 2
4 4 5 1 2 3
5 5 1 2 3 4
6 1 1 1 2 4
7 2 2 2 3 5
8 3 3 3 4 1
9 4 4 4 5 2
10 5 5 5 1 3
11 1 1 1 2 3
12 2 2 2 3 4
13 3 3 3 4 5
14 4 4 4 5 1
15 5 5 5 1 2

ment label once each. Because f equals O or 2 in each of the first 7 rows of £, we see
that fori # j

E JESE=s+r(n=2)/(n—1)=B(n-1)/n
b

from which we deduce that s =r/(n — 1).

Example 7. Onedesign for n = 6 starts with the balanced incomplete block design
whose r= 10 blocks (rows) are (1,2,5), (1,2,6), (1,3,4), (1,3,5), (1, 4,6),
2,3,4),2,4,5), 2,3,6), (3, 5, 6) and (4, 5, 6). This is to be duplicated, and the
remaining r/(n — 1) = 2rows of £ set equalto (1, 2, 3, 4, 5, 6). The resulting design is
shown in Table 6. The same construction appears to work for B =2n, n any even
integer.

A similar type of design can be constructed with B = n when n = 4m + 3 is a prime
number. Then a series of symmetric balanced incomplete block designs exists, and the
solution for £ in a single cycle may be obtained in the following way. The initial block
consists of the quadratic residues of the Galois field of n elements twice each together
with the element n once.

Example 8. For n =7, the quadratic residues are 1, 2 and 4. The resulting design
has initial block (1, 1, 2, 2, 4, 4, 7), which together with the rest of a full cycle gives &
as in Table 7.

Similar designs are easily constructed for n =11, 19, 23, 31 and so forth.

The reader familiar with resampling methods will be struck by the similarity of
Tables 6 and 7 to balanced half-sample designs, which are obtained by similar
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TABLE 6
Design based on balanced incomplete blocks for n=6,
B=12;D,,. =0
Sample i
b 1 2 3 4 5 6
1 1 1 2 2 5 5
2 1 1 2 2 6 6
3 1 1 3 3 4 4
4 1 1 3 3 5 5
5 1 1 4 4 6 6
6 2 2 3 3 4 4
7 2 2 4 4 5 5
8 2 2 3 3 6 6
9 3 3 5 5 6 6
10 4 4 5 5 6 6
11 1 2 3 4 5 6
12 1 2 3 4 5 6
TABLE 7

Design based on balanced incomplete block designforn=7,B=7

Sample i
b 1 2 3 4 5 6 7
1 1 1 2 2 4 4 7
2 2 2 3 3 5 5 1
3 3 3 4 4 6 6 2
4 4 4 5 5 7 7 3
5 5 5 6 6 1 1 4
6 6 6 7 7 2 2 5
7 7 7 1 1 3 3 6

methods. Such designs have been quite thoroughly studied. Efron (1982) gives a use-
ful account, which includes the recommendation that the half-samples be augmented
by their complements. In Table 7, for example, we would addrow (3, 3, 5, 5, 6, 6, 7),
and so forth.

There is, then, a variety of second-order balanced designs, some as rigid as the half-
sample designs of pre-bootstrap methodology. We know that such designs will yield
bias and variance approximations correct to the order »~! term for statistics of the
form (2.3). For some applications this will be satisfactory, but possibly not if we wish
to use direct bootstrap percentile estimates. Intuitively it seems clear that ordered
values of the bootstrap statistics 73 may not be accurate approximations td per-
centiles if the bootstrap design is far from third- and fourth-order balance. Thereis no
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obvious association of second-order and higher order balance. We have two options:
construct designs with higher order balance, or selectively choose among the first- and
second-order balanced designs. Although the first option is real, as we know from the
existence of Latin cube designs with B = n3, the second option seems more practic-
able. This leads us naturally to consideration of numerical examples to assess the
effectiveness of the design methods so far discussed.

4. NUMERICAL ILLUSTRATIONS

The balanced sampling designs described in the previous sections are designed to
reduce or remove the simulation error in approximating the bootstrap mean or
variance of a statistic. For example, second-order balanced designs ensure that the
bootstrap mean and variance of an average are correctly calculated from the B
designed samples; see also examples 3 and 5. But how well do balanced designs work
with non-linear statistics, and how well do they work when percentiles, rather than
moments, are being estimated? Partial answers to these questions come from our
numerical experiments, in which we repeatedly apply bootstrap simulation designs for
estimating properties of the sample average, Student’s ¢-statistic, the sample correla-
tion and the Fisher transform of the sample correlation. Some general features of the
numerical results are followed up in Section 5.

4.1. Example 9: Sample Average and t-statistic
Suppose that we are given the skew sample of n = 11 x values

9.6 104 13.0 15.0 16.6 17.2 17.3 21.8 24.0 26.9 33.8

and that we wish to use the bootstrap to assess distributional properties of the sample
average x and the Student #-statistic

t=(— p)Vn/s,
where
§2=2(x; —x)*/(n—1).

Consider particularly bootstrap estimates of percentiles. From a specific sampling
design we obtain B values of x*, say, whose ordered values are x}, < ... < x%. Then
for any p such that (B + 1)p = q is an integer, the 100pth percentile of x is simply
estimated by x{,. The simulation error in this estimate is

€ =X ~ Xp» “.1

where Pr(x* < X,|F) =p. Our numerical experiments evaluate errors (4.1) for
repeated applications of each type of bootstrap design. The exact values x,, and
corresponding percentiles ¢, of #, are very accurately approximated from a single,
completely random bootstrap design with B = 12 199.

The four types of bootstrap design are completely random, first order balanced
based on randomized block designs, second order balanced based on orthogonal
Latin squares and second order balanced based on balanced incomplete block
designs. We refer to these as zero, first, second and 2Pth order respectively; the last is
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partially balanced in the sense that it balances frequencies f*, but not £. All designs
are applied with B = 121.

The methods for generating random zero- and first-order designs are self-evident.
For a random second-order design, we use as basis the first nine orthogonal 11 x 11
Latin squares given by Fisher and Yates (1957), then apply random permutations of
treatment labels 1, . .., 11 separately within each square. For a random 2Pth-order
design, we begin with the 11 initial blocks

0,0,2,2,3,3,4,4,8,8,10
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Each initial block leads to 10 additional blocks by successively adding 1,2, ..., 10
modulo 11. Then add 1 everywhere. A single random non-cyclic permutation of treat-
ment labels 1, 2, .. ., 11isapplied to the set of 11 blocks, which is itself balanced. The
11 sets are then combined.

For each type of design, 100 random replicates are applied to the data. The result-
ing 100 errors e} in equation (4.1) are summarized by their mean and standard devia-
tion for p=¢g/122, g=1,2,...,121, these summaries being plotted against exact
percentiles in Fig. 1 for zero-, second and 2Pth-order designs. Evidently the second-
order designs greatly reduce simulation variability for percentile estimates when
0.05 < p £ 0.95, but the 2Pth-order design gives substantial bias in percentile

1 034
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>
200 3
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o
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c
i
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-0-54 0-04
14 24 14 24
Exact percentile Exact percentile
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4
Fig. 1. (a) Averages and (b) standard deviations of 100 simulation errors in bootstrap percentile
estimates for x (bootstrap size B = 121): , zeroth order; %, second order; ¢, 2Pth order, balanced
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Fig. 2. (a) Averages and (b) standard deviations of 100 simulation errors in bootstrap percentile
estimates for 7 (bootstrap size B = 121): , zeroth order; %, second order; ¢, 2Pth order, balanced

estimates. The corresponding summaries of simulation errors in ¢ percentiles, shown
in Fig. 2, have similar features; the same 100 designs for each type are used here.

It is noticeable in both figures that at p = 0.008 and p = 0.992 the second-order
design gives errors as large as the zero-order design and larger than the 2Pth-order
design. We comment further on this in Section 5.

Simulation errors for 20 individual bootstrap applications with each design are
shown in Fig. 3 for x percentiles and in Fig. 4 for ¢ percentiles at p values of 0.025,
0.05,0.10, 0.20, 0.35, 0.50, 0.65, 0.80, 0.90, 0.95 and 0.975. Errors for an individual
bootstrap sample are connected by lines. Clearly the second-order design is superior
to the first-order design, in that reduction of simulation error is pushed further into
the tails. Large simulation errors at the extremes persist from zero- to second-order
designs.

4.2, Example 10: Sample Correlation
This second numerical experiment concerns the distribution of the sample correla-
tion coefficient r and its variance stabilizing transform z = tanh-! r. The data set is
the following pseudonormal sample of n = 11 pairs (x, ), for which r = 0.721:

X —-1.21 0.21 1.33 -0.67 1.53 —1.61 0.78 —0.09 0.38 0.23 —1.41,
y —1.48 1.18 —0.10 —1.34 0.91 —0.75 0.62 —0.93 —0.23 —0.29 —0.85.

Precisely the same bootstrap designs as in example 9 are used. For 20 random designs
of each type, simulation errors in percentiles of r and z are shown in Figs 5 and 6;
errors for each bootstrap are connected by lines for p values of 0.025, 0.05, 0.10, 0.20,
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Fig. 3. Simulation errors in bootstrap percentile estimates for ¥ in 20 bootstraps of each type with
B = 121 (errors for a single bootstrap are connected): (a) zeroth-order design; (b) first-order design;
(c) second-order design; (d) 2Pth-order design

0.35, 0.50, 0.65, 0.80, 0.90, 0.95 and 0.975. The means and standard deviations of all
percentile estimates in 100 random replicates are plotted in Fig. 7 for z, omitting the
first-order designs. Again the second-order designs give considerably reduced error
for 0.05 € p £ 0.95, but fail to give improvement at the extremes. And again con-
sistent error is noted in the 2Pth-order design.

Corresponding results for bootstrap estimation of the mean and variance of r and z
show balanced designs to be very effective. Table 8 summarizes results for z from 20
random replicates of each type of design. The efficiency of the second-order designs is
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Fig. 4. Simulation errors in bootstrap percentile estimates for # in 20 bootstraps of each type with
B = 121 (errors for a single bootstrap are connected): (a) zeroth-order design; (b) first-order design;
(c) second-order design; (d) 2Pth-order design

about 4 relative to zero-order designs. Note the bias in estimating var(z) with the 2Pth-
order design.

5. FURTHER COMMENTS

From the examples in Section 4 balanced sampling designs succeed in their explicit
objectives, reducing simulation errors in bootstrap means and variances. The peculiar
restrictions on existence of second-order balanced designs are an obstacle to practical
implementation of our work. Further investigation is needed, but perhaps balanced
half-sampling (Efron, 1982) will be among the preferred methods for general use;
cf. examples 7 and 8.
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Fig. 5. Simulation errors in bootstrap percentile estimates for r in 20 bootstraps of each type with
B = 121 (errors for a single bootstrap are connected): (a) zeroth-order design; (b) first-order design;
(c) second-order design; (d) 2Pth-order design

For the bootstrap percentiles, however, the balanced designs do not give such large
improvements: the Latin square designs have efficiency between 2 and 3 for per-
centiles away from the extremes, and the partially balanced designs based on incom-
plete block designs give biased estimates of percentiles. An associated phenomenon is
that second-order balance is not positively correlated with third- or higher order
balance.

There is the potential benefit from eliminating designs with inadequate coverage of
the n-dimensional lattice cube {1, 2, ..., n}" support for £. For statistics which are
invariant under data permutation it would be more appropriate to focus on coverage
of the support simplex for f*. From detailed inspection of our numerical experiments

TABLE 8
Means and standard deviations of simulation errors in bootstrap estimates of the mean and variance ofzt

Design Bootstrap mean of 7 Bootstrap variance of z
Mean error Standard deviation of error Mean error Standard deviation of error
Oth order -0.003 0.0126 —0.0016 0.0199
1st order -0.005 0.0154 0.0018 0.0163
2nd order -0.010 0.0074 -0.0035 0.0107
2Pth order 0.008 0.0079 0.0168 0.0086 !

t 20 replicates, B = 121,
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Fig. 6. Simulation errors in bootstrap percentile estimates for z in 20 bootstraps of each type with
B = 121 (errors for a single bootstrap are connected): (a) zeroth-order design; (b) first-order design;
(¢) second-order design; (d) 2Pth-order design

a very small proportion of Latin square designs have a very small number of peculiar
rows, which lead to large errors in extreme percentile estimates. The basic, pre-
randomized design in Table 3 is an example of this. Such extreme designs should be
eliminated. Unfortunately our detailed inspection of many second-order designs has
not yet yielded a simple, programmable criterion for screening out bad designs. Quite
possibly it would be wiser to seek out low discrepancy first-order balanced designs.

During the course of revising this paper, we have become aware of two other useful
developments in bootstrap simulation, by Johns (1988) and Efron (1989). The latter
includes some additional empirical assessments of our designs.
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