Ramsey Theory

The brilliant mathematician Frank Plumpton Ramsey proved
that complete disorder is an impossibility. Every large set of numbers,
points or objects necessarily contains a highly regular pattern

by Ronald L. Graham and Joel H. Spencer

ccording to a 3,500-vear-old cu-
neiform text, an ancient Sumeri-

an scholar once looked to the

stars in the heavens and saw a lion, a
bull and a scorpion. A modern astron
omer would be more likely to describe
a constellation as a temporary collec-
tion of stars, which we earthlings ob-
serve from the edge of an ordinary gal-

axy. Yel most stargazers would agree
that the night sky appears to be filled
with constellarions in the shape of
straight lines, rectangles and penta-
gons. Could it be that such geometric
patterns arise from unknown forces in
the cosmos?

Mathematics provides a much mare
plausible explanation. In 1928 Frank

PARTY PUZZLE typifies the problems that Ramsey theory addresses. How many
peaple does it take vo form a group that always contains either four mutual ac-
gquainiances or four mutual strangers? In the diagram, points represent people, A
red edge connects people who are mutual acquaintances, and a blue edge joins
people who are mutual strangers. In the group of 17 points above, there are no
four points whose network of edges are either completely red or completely blue.
Therefore, it takes more than 17 people to guarantee that there will always be four
people who are either acquaintances or strangers. In fact, in any group of 18 peo-
ple, there are always either four mutual acquaintances or four mutual strangers.
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Plumpton Ramsev, an English mathe
matician, phulosopher and econonnst,
proved that such patterns are actually
implicit in any large structure, whether
it is a group of stars, an array of peb-
bles or a series of numbers generated
by throws of a die. Given enough stars,
for instance, one can always find a
group that very nearly forms a particu-
lar pattern: a straight line, a rectangle
or, for that matter, a big dipper. In fact,
Ramsey theory states that any struc-
ture will necessarily contain an order
Iy substructure. As the late American
mathematician Theodore 5. Motzkin
first proclaimed some 25 years ago,
Ramsey theory implies that complete
disorder is an impossibility.

Ramsey theorists struggle to figure
out just how many stars, numbers or
figures are required to puarantee a cer-
tain desired substructure. Such prob-
lems often take decades to solve and
vield to only the most ingenious and
delicate reasoning. As Ramsey theo-
rists search for solutions, they assist
engineers attempting to build better
communications networks as well as
information transmission and retrieval
systems. Ramsey theorists have also
discovered some of the mathematical
tools that will guide scientists in the
next century, Perhaps most important,
Ramsey theorists are probing the ult-
mate structure of mathematics, a struc-
ture that transcends the universe,

1 nlike many branches of math-
ematics that interest profession-
als today, Ramsey theory can

be presented inmitively. Indeed, the

charm of Ramsey theory is derived in
part from the simplicity with which the
problems can be stated. For example, if
six people are chosen at random (say,

Alfred, Betty, Calvin, Deborah, Edward

and Frances), is it true that either three

of them mutually know one another or
three of them mutually do not know
one another?

We can solve the “party puzzle® in
many ways. We could list all conceiv-
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able combinations and check each one
for an acquainted or unacquainted
group of three. But because we would
have to check 32,768 (or 2*) combina-
tions, this brute-force method is nei-
ther practical nor insightful.

Fortunately, we can find the answer
by considering two simple cases. In the
first case, suppose Alfred knows three
jor more) of the others, say, Betty,
Calvin and Deborah. If either Betty and
Calvin or Betty and Deborah or Calvin
and Deborah are mutual acquaintanc-
es, then Alfred and the acquainted pair
make three people who know one an-
other. Otherwise Betty, Calvin and Deb-
orah are mutual strangers. In the sec-
ond case, suppose Alfred knows only
two (or fewer) of the others, say, Betty
and Calvin. If either Deborah and Ed-
ward or Deborah and Frances or Ed-
ward and Frances are strangers, then
Alfred and the unacquainted pair make
three people who do not know one an-
other. Otherwise Deborah, Edward and
Frances are mutual acquaintances. In
just six sentences, we have shown why
any party of six people must include
at least three murual acquaintances
or three mutual strangers. More to the
point, the solution to the party puzzle
is a special case of Ramsey theory.

By generalizing this special case,
we can give the full theorem. Instead
of considering six people in the prob-
lem, we can have any number of peo-
ple or, for that matter, any number
of objects. We need not restrict our-
selves to two relationships, acquain-
tances and strangers. We can have any
number of mumually exclusive relation-
ships—for instance, friends, foes and
neutral parties.

We can then describe the full Ramsey
theorem. If the number of objects in a
set is sufficiently large and each pair of
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RAMSEY NUMBERS are defined as the smallest value of n such that in a group of n
points either a group of j points forms a complete network of red edges or a group
of k points forms a complete network of blue edges. The diagrams above indicate
how large a particular Ramsey number should be. The first diagram shows five
points connected by red and blue edges in such a way that no three points form
either a red or a blue complete network. Hence, the first diagram implies that the
Ramsey number for red three and blue three must be greater than five. In a simi-
lar manner, one can argue that the second diagram suggests that the Ramsey num-
ber for red three and blue four is greater than eight. By other more complicat-
ed techniques, it can be demonstrated that the Ramsey number for red three and
blue three is six and that the number for red three and blue four is nine. All of
the exact Ramsey numbers that are known are given above, except the Ramsey
number for red four and blue four, whose diagram is shown on the opposite page.
(In some of the diagrams the blue edges are omitted for simplicity.) The Ramsey
number for red three and blue eight has been proved to be greater than 27 and
less than or egual to 29, Recently it was shown (but not vet verified) to be 28.
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CASE | CASE 2

CONVEX
QUADRILATERAL

RAMSEY THEORY was rediscovered in 1933 when a young student, Esther Klein,
introduced a geometric problem: if five points lie in a plane so that no three points
form a straight line, prove that four of the points will always form a convex
quadrilateral. All cases of the problem are variations of the three above, The sim-
plest case occurs when the convex hull—the convex polygon enclosing all the
points—is a quadrilateral. If the convex hull is a pentagon, then any four points
can be connected to form a quadrilateral. A triangular convex hull will always con-
tain two points, here D and E. The line DE splits the triangle so that two points, A
and B, are on one side. The four points ABDE must form a convex quadrilateral.

objects has one of a number of rela-
tions, then there is always a subset
containing a certain number of objects
where each pair has the same relation.

Frank Ramsey, who first proved this
statement in 1928, grew up in Cam-
bridge, England. His father, Arthur 5.
Ramsey, was professor of mathematics
and president of Magdalene College
at Cambridge. In 1925 voung Ramsey
graduated as the university's top math-
ematics student. Although philosephy
and mathematical logic chiefly engaged
him, he also contributed to economics,
probability, decision theory, cognitive
psychology and semantics,

Shortly after graduation, he joined a
group of economists headed by John
Maynard Keynes. Ramsey wrote only
two papers on mathematical econom-
ics, but both are still widely cited. In
philosophy his inspiration came from
George E. Moore, Ludwig Wittgenstein
and Bertrand Russell. Moore wrote, “He
was an extraordinarily clear thinker:
no one could avoid more easily than
he the sort of confusions of thought
to which even the best philosophers
are liable." Then, tragically, in 1930,
at the age of 26, Ramsey took ill and
died of complications from abdominal
SUrgery.

An irony is attached to the story of
how, two years before his death, Ram-
sey derived his eponymous theory. He
came on the central idea while attempt-
ing to prove a premise put forward by
Russell and Alfred North Whitehead in
their masterwork, Principia Mathemati-
ci. They proposed that all mathemar-
cal truths can be deduced from a con-
cise set of axioms. Expanding on their
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idea, the German mathematician David
Hilbert had suggested that there must
be a procedure to decide whether or
not a given proposition follows from
a particular set of axioms. Ramsey
showed that there was such a decision
procedure for a special case, (A few
years later Kurt Godel, followed by the
English mathematician Alan M. Turing
and others, showed conclusively that
for the general case, there was no such
decision procedure.)

Ramsey proved his theorem as a first
step in his attempt to demonstrate the
special case. As it turned out, he could
have accomplished the same task by
other means. Ramsey had proved a the-
orem that was superfluous to an ar-
gument, which he could never have
proved in the general case.

here matters lay until 1933,

when two Hungarian mathema-

ticians, Paul Erdos and George
Szekeres, rediscovered Ramsey theo-
ry. They are largely responsible for its
popularization in the mathematics
communiry. At the time, Erdds was a
19-year-old student at the University of
Budapest, and Szekeres had recently
earned a degree in chemical engineer-
ing from the Technical University of
Budapest. They and a group of fellow
students would meet almost every Sun-
day in a park or at school, mainly to
discuss mathematics.

At a meeting during the winter of
1933, one of the students, Esther Klein,
challenged the group to salve a curious
problem: if five points lie in a plane so
that no three points form a straight
line, prove that four of the points will

always form a convex quadrilateral,
(The term convex suggests a bulging
geometric figure such as a hexagon but
not a five-pointed star. More specifical-
ly, a polygon is convex if every line seg-
ment drawn between its vertices lies in-
side the polygon.)

After allowing her friends to contem:
plate the problem, Klein presented a
proof [see illustration at left]. Frdos and
Klein quickly came up with a general-
ization of the problem. They realized
that five of nine points in a plane will
always form a convex pentagon. They
then offered a new problem: if the
number of points that lie in a plane s
equal to 1+ 2%-? where kis3ord or 5
and so on, can one always select k
points so that they form a convex k-
sided polygon?

In a memoir Szekeres recalled the
scene: "We soon realized that a simple-
minded argument would not do and
there was a feeling of excitement that
a@ new type of geometrical problem
emerged from our circle.” Szekeres ea-
gerly demonstrated that there always
exists a number n such that if n points
lie in the plane so that no three form
a straight line, it is possible to select
k points that form a convex k-sided
polygon. In other words, given enough
points, one can always find a set that
will form a particular polygon. In prov-
ing this, Szekeres had rediscovered
Ramsey's theorem, although no one in
the group knew it at the time.

In 1934 Erdos and Szekeres reported
their results, but neither they nor any-
one else to this day has been able to
prove Erdos's conjecture that precisely
n=1+2%2 points suffice. Erdos often
refers to their joint publication as the
“Happy End Paper,” because soon after
publication Szekeres and Klein mar-
ried. Erdos became the most prolific
mathematician of this century,

ErdOs was intrigued by Ramsey's
idea that any sufficiently large struc-
fure must contain a regular substruc-
ture of a given size. But he wondered
exactly how large the structure must be
to guarantee a certain substructure, So
Erdos began work on a version of the
party puzzle,

In this version the six people are rep-
resented as six points. For convenience,
the points are drawn on a plane so that
no three are in a line. The points are
connected by an edge, which is colored
to represent the relationship of the
corresponding two people. A red edge
means the people mumally know one
another, and a blue edge means they
do not know one another.

Hence, if three people are mutual
acquaintances, the edges between the
points will form a red triangle, and if



three people are mutual strangers, a
blue triangle will be formed. The party
puzzle can be rephrased as follows: Is
it rue that if each edge between six
points is arbitrarily colored either red
or blue, there will always be either a
red or a blue triangle?

The problem that Erdos studied is a
general version of this one. He defined
a complete network as a number of
points that are all connected by edges.
He then asked what the smallest com-
plete network is that when arbitrarily
colored red and blue will guarantee ef-
ther a red or a blue complete netwark
of three points, The answer is a com-
plete network of six points. The prob-
lem and solution can be more conve-
niently expressed as follows: the Ram-
sey number for red three and blue
three is equal to six.

But what about the Ramsey number
for red five and blue three? In other
words, what is the smallest complete
network that when arbitrarily colored
red and blue will guarantee either a
red network of five points or a blue
network of three points? The Ramsey
number for red five and blue three is
14, which was not proved until 1955 by
Robert E. Greenwood of the Universi-
tv of Texas at Austin and Andrew M.
Gleason of Harvard University,

Ramsey numbers are notoriously
difficult to calculate. The efforts of gen-
erations of mathematicians and com-
puters have succeeded in finding only
seven Ramsey numbers, which are giv-
en in the illustration on page 113.

To express the difficulty of calculat-
ing Ramsey numbers, Erdos often tells
the following anecdote. Aliens invade
the earth and threaten to obliterate it
in a year's time unless human beings
can find the Ramsey number for red
five and blue five, We could marshall
the world's best minds and fastest
computers, and within a year we could
probably calculate the value. If the
aliens demanded the Ramsey number
for red six and blue six, however, we
would have no choice but to launch a
preemptive attack.

Erdos did find a way, however, to
get some idea of how large a Ram-
sey number must be. What if he could
find a red and blue coloring of a large
complete network that did nor form
either a red or a blue network of three
points? Such a coloring of the com-
plete network of five points is shown
on page 113. It follows that the Ramsey
mumber for red three and blue three
must be greater than five, Five is a low-
er bound for that Ramsey number,

In 1947 Erdos proposed an unusu
al method for finding the lower baund
of any Ramsey number: flip a coin. He

performed a thought experiment in
which each edge of a complete network
of, say, a million points was colored ac-
cording to the flip of a fair coin. The
edge would be red for “tails” or blue
for “heads.” He then tried to show that
the Ramsey number for, say, red 34
and blue 34 is greater than a million,
The experiment was a success if there
was neither a red nor a blue network
of 34 points.

How could he ensure success? Any
34 points must have 561 edges be-
tween them. If the first coin flip
specifies blue for the first edge, then
the next 560 flips must also specify
blue in order to produce a blue
network. The probability of this occur-
ring is one half to the power of 561. A
red network has an equal probability of
occurring so the total probability is
double, or approximately 2.6 x 10 =449,

Now the number of sets of 34 points
in a million points is equal to (1,000,
000 = 999,999 =... x 999,967) divided
by (34 x 33 x... %2 % 1), which is about
3.4x10%5, Qut of all possible com-
plete networks of 34 points, therefore,
one would expect (3.4 x1085) % (2.6 x
10-'%¥), or roughly .001, to be mono-
chromatic. Thus, 99.9 percent of the
time the thought experiment is a suc-
cess with no 34-point monochromatic
sets created,

Erdos then emploved a subtle reduc-

tio ad absurdum. He hypothesized that
no coloring scheme was successful,
Then the thought experiment would
have zero probability of success, which
he knew was not the case. The hypoth-
esis must be incorrect; there must be a
successful coloring (not just with 99.9
percent certainty but with absolute cer-
tainty). The existence of a coloring im-
plies that one million is a lower bound
for the Ramsey number for red 34 and
blue 34,

This argument, which is known as
the probabilistic method, has given the
best available lower bounds for Ram-
sey numbers. The probabilistic method
gives no clues, however, concerning the
actual “construction” of the desired
coloring. In an attempt to produce
these colorings, workers have applied
a range of techmigues from number
theory, set theory and other branches
of mathematics. The results, although
interesting, do not yet approach the
bounds obtained by flipping a coin.

Ithough much of the early work in
ARﬂmsey theory focused on sets
of points and lines, many of the
first problems involved sets of num-
bers. In fact, the Dutch mathemari-
clan Bartel L. van der Waerden began
solving such problems before Ramsey
proved his theorem.
In 1926 van der Waerden learned

Ramsey Theory and Arithmetic Progressions

An arithmetic progression s a sequence of numbers in which the difference
between successive terms remains constant. For Instance, 7, 10, 13, 16 is an
arithmetic progression in which the difference between successive terms is three.
The following statement about arithmetic progressions follows from Ramsey the-
ory: if each number 1 through 9 is colored either red or blue, either three red or
three blue numbers will farm an arithmetie progression.

To prove the conjecture, we might check every one of the 512 ways that nine
numbers can be colored. Yet we can prove the conjecture by considering only two
cases, We start with the case in which 4 and 6 are the same colar, say, blue.

1 2 3 4 5 L 7 B 2

To avaoid the red arithmetic progression 4, 5, 6, we color § red.
1 2 3 4 5 6 7 8 9

To avoid the blue arithmetic progressions 2, 4, 6 and 4, 6, &, we calor 2 and & red.
1 2 3 1 5 & 7 8 9

But that leaves the red arithmetic progression 2, 5, 8. Hence, if 4 and & are the same
color, there is always either a red or a blue arithmetic progression. Next we con-
sider the case in which 4 and 6 are different colors. We can color 5 either red or
blue without forming an arithmetic progression, 5o we arbitrarily choose to color
5 red.

1 2 3 4 5 B 7 8 9
We continue to coler the numbers as follows:

itoavoid 345

/toavald § 7 9

Ztoavoid 25 8
This coloring yields the sequence

I 2 i 4 5 i 7 & a9
Yet we are still left with the red arithmetic progression 1, 5, 9, Therefore, regard-
less of whether 4 and 6 are the same color or different, there is always either a
red or a blue arithmetic progression.

9toavoid 369
Btoavoid 6 7 8
ltoavoidt 2 3
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drew some diagrams on the black-
board. We had what the Germans call
‘Einfélie’: sudden ideas that flash into

about a curious problem involving
arithmetic progressions. As the phrase
implies, an arithmetic progression is
a sequence of numbers in which the
difference between successive terms
remains constant. For example, the se-
quence 3, 5, 7 is a three-term arith-
metic progression in which the differ-
ence between successive terms is two.
A special case of the problem that
caught van der Waerden’s interest was
the following: If each integer from 1
through 9 is printed on a page in one
of two colors, either red or blue, is it al-
ways true that either red three or blue
three numbers will form an arithmetic
progression? The answer is given in
the box on the preceding page.

Van der Waerden challenged himself
with the following generalization: if n
is a sufficiently large integer and if
each integer from 1 through nis print-
ed arbitrarily in one of two colors, then
there is always a monochromatic arith-
metic progression with a certain num-
ber of terms. One can think of this
statement as Ramsey’s theorem for
arithmetic progressions, although it is
generally known as van der Waerden's
theorem. .

Van der Waerden enlisted the help
of his colleagues Emil Artin and Otto
Schreier. He later wrote: “We went into
Artin’s office in the Mathematics De-
partment of the University of Ham-
burg, and tried to find a proof. We

ideas gave the discussion a new turn,
and one of the ideas finally led to the
solution.” It turned out, however, that
van der Waerden could not demon-
strate the result for two colors without
simultaneously demonstrating it for an
arbitrary mumber of colors.

For his proof, van der Waerden em-
ployed a special form of mathematical
induction. The usual form, known as
single induction, has two steps. First,
one shows that the result holds for
some small value, such as two. Second,
one proves that if the result holds for
any value then it holds for the next
larger value. This implies that it holds
for three, four and so on. The results
fall like an infinite set of dominoes.

Van der Waerden employed a more
subtle, double induction to prove Ram-
sey’s theorem for arithmetic progres-
sions. He assumed that for any fixed
number of colors there was a number
n such that if each integer from 1
through n were printed in one of these
colors, then there would be a mono-
chromatic arithmetic progression of,
say, 10 terms. He could then deduce
that for any fixed number of colors,

integer from 1 through m were print-
ed in one of these colors, then there

Ramsey Theory and Tic-Tac-Toe

In 1926 Bartel L. van der Waerden proved that if n is a sufficiently large integer
and if each integer 1 through n» is printed arbitrarily in one of two colors, then
there is always a monochromatic progression with a certain number of terms. In
1963 Alfred W. Hales and Robert I. Jewett found what has proved to be the
essence of van der Waerden's theorem while investigating the game tic-tac-toe.
Although the classic three-on-a-side tic-tac-toe can get tiresome, four-on-a-side tic-
tac-toe in three dimensions is quite chalienging. The board for the three-
dimensional game has 64 cells arranged in a cube. Players alternately fill the cells
with naughts and crosses until one player wins by occupying four cells in a line.
Two- and three-dimensional tic-tac-toe sometimes end in a tie. But what about
higher-dimensional games? Is a player ever guaranteed to win in some »n-
dimensional k-in-a-row version of tic-tac-toe?

Hales and Jewett showed that if the dimension » is large enough, one can
always find a k-in-a-row version that never ends in a tie. For instance, no matter
how the naughts and crosses are arranged on a three-dimensional three-in-a-row
version, either three naughts will occupy a line or three crosses will occupy a line.

Van der Waerden's theorem can be derived from the Hales-Jewett result by
employing a transformation that converts lines of tic-tac-toe into arithmetic pro-
gressions. Consider a game of three-in-a-row tic-tac-toe in three dimensions.

1 2 3
1 1 1
2 X 2 X 2 X
3 3 3
T 2 3 T2 3 1 2 3

The coordinates for the crosses in this winning combination are 121, 222 and 323,
which form ar arithmetic progression. It can be shown that any winning combination
transformed by this method will yield an arithmetic progression.

one’'s mind. Several times such new

there was a number m such that if each
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would be a monochromatic arithmetic
progression of 11 terms. In general, he
showed that knowing the result for k
terms and all numbers of colors im-
plies the result for k+1 terms and all
numbers of colors.

Once van der Waerden had arrived at
that stage in the proof, he had only to
demonstrate that the result does hold
for some small value of k. If the num-
ber of integers is one more than the
number of colors, then there are al-
ways two integers that have the same
color. These two integers form an
arithmetic progression of two terms.
Thus, if the number of integers is one
more than the number of colors, there
is always a monochromatic arithmetic
progression of two terms. The infinite
set of dominoes with two terms now
pushes over the infinite set with three
terms, which in turn pushes over the
infinite set with four terms and so on
[see box on this page].

aving proved Ramsey's theorem

for arithmetic progressions, van

der Waerden applied his knowl-
edge to the following problem: What
is the smallest value of n that will guar-
antee a monochromatic arithmetic pro-
gression of, say, 10 terms if each inte-
ger from 1 through n is printed arbi-
trarily in one of two colors? The best
answer that van der Waerden could
find was so large that it cannot be writ-
ten in conventional notation. It was
larger than a billion, larger than 10 to
the power of a billion.

In fact, in order to express his result,
mathematicians rely on a sequence of
functions known as the Ackermann hi-
erarchy. The first function in the hier-
archy is simply called DOUBLE (x). As
the name implies, the function doubles
the number x. Therefore, DOUBLE (1)
equals 2, and DOUBLE (50) equals 100.
The second function, EXPONENT (x), can
be expressed as 2 to the power of x,
and therefore, EXPONENT(3) equals 8.
We also can describe EXPONENT in
terms of DOUBLE. To find EXPONENT
(3), for instance, we double 1, then dou-
ble the result, then double the result
again. In fact, each function in the Ack-
ermann hierarchy is defined in terms
of its predecessor.

Hence, the third function in the hier-
archy, TOWER (x), can be expressed us-
ing EXPONENT. TOWER(3), for example,
is 2 to the power of 2 to power of 2,
which equals 2 to the power of 4, or
16. TOWER (x) is sometimes written as a
tower of exponents

.2
222"

where there are x nmumber of 2’s in the



tower. Yet even the TOWER (x) function
does not increase rapidly enough to de-
scribe van der Waerden’s result.

The next function, informally known
as wow(x), is found by beginning at
! and applying the TOWER function x
times. Therefore,

WOW (1) = TOWER (1) = 2
WOW (2) = TOWER (2) = 4
WOW (3) = TOWER {4) = 65,536

To find wow (4), we need to compute
TOWER (65,536). To do this, we begin at
1 and apply EXPONENT 65,536 times.
Even applying EXPONENT just five times
gives 2553, a number whose digits
would fill two pages of this magazine.
In fact, if a number filled every page of
every book and every memory bank of
every computer, it would still be in-
comparable to wow (4),

Yet to give van der Waerden’s result,
we must define a function that grows
even faster. The function ACKERMANN
(x) is defined by the sequence DOUBLE
(1), EXPONENT (2), TOWER(3), wow (4)
and S0 on. ACKERMANN (x) eventually
dominates all of the functions of the
hierarchy. Van der Waerden’s proof
gave the following quantitative result:
if the integers 1, 2,..., ACKERMANN (k)
are two-colored, then there is always a
monochromatic arithmetic progression
of k terms.

It seemed preposterous that such
enormous numbers could come out of
such an innocent statement involving
only arithmetic progressions. Over the
years many mathematicians attempt-
ed to improve the proof of van der
Waerden. As the failures mounted, the
idea began to gain support that a dou-
ble induction and the corresponding
ACKERMANN function were necessary
features in any proof of van der Waer-
den’s theorem. Increasingly, logicians
tried to supply arguments that this in-
deed was so.

In 1987, however, Israeli logician Sa-
haron Shelah of the Hebrew University
in Jerusalem achieved a major break-
through. Shelah is widely regarded as
one of the most powerful problem
solvers in modern mathematics. He
broke through the ACKERMANN barri-
er to show the following: if the integers
1, 2,...,wow (k) are two-colored, then
there must always be a monochromatic
arithmetic progression of k terms.

Despite his background, Shelah’s
proof uses no tools from mathematical
logic whatsoever. His proof employs
only elementary (but highly ingenious)
mathematical ideas. Written out in full,
the proof is perhaps four pages long,
and most experts consider it clearer
than van der Waerden’s original proof.

CONCEPTS in Ramsey theory can be applied to problems in geometry such as this
hexagon puzzle. If the sides of the hexagons are all .45 unit long (the unit is arbi-
trary), then two points within a hexagon are at most .9 unit apart. Each hexagon is
shaded with one of seven colors so that no two hexagons of the same color are
less than 1.19 units apart. No two points of the same color are precisely one unit
apart. No one has been able to determine whether or not the plane can be shaded
with six colors so that no two points of the same color are precisely one unit apart.

Most important, he avoids the double
induction. He fixes the number of col-
ors at two (or any particular number)
and then proves a simple induction; if
the result holds for progressions of k
terms then it also holds for progres-
sions of (k+ 1) terms.

Mathematicians are now poring over
Shelah’s proof to see if it can in fact be
further improved to give a TOWER or
even an EXPONENT function for van der
Waerden'’s theorem. One of us (Gra-
ham) has offered a reward of $1,000
for a proof (or disproof) that for each
number k, if the numbers 1, 2,...,Tow-
ER(k) are two-colored, then a mono-
chromatic arithmetjc progression of k
terms must be formed.

he work of Ramsey, Erdds, van

der Waerden and many others

established the fundamentals of
Ramsey theory. Yet workers have only
begun to explore the implications of
the theory. It suggests that much of
the essential structure of mathemat-
ics consists of extremely large num-
bers and sets, objects so huge that
they are difficult to express, much less
understand.

As we learn to handle these large
numbers, we may.find mathematical
relations that help engineers to build
large communications networks or

help scientists to recognize patterns in
large-scale physical systems. Today we
can easily recognize the constellations
in the night sky as a consequence of
Ramsey theory. What patterns may we
find in sets that are ACKERMANN(9)
times larger?
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