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ABSTRACT

The Erdés-Ko-Rado Theorem is a central result of combingtorics
which opcned the way for the rapid develorment of extremal set theory,
Proofs of it are revie.cd and a new generalization is given, For a survey
of results related to the Erdés-Ko-Rado TLeorem see [DF],
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1 Introduction

Let X be a finite set of n elements, Usually we suppose that X = {1, 2.,
X
n}, Let 2* be the power set of X and ( ) the set of all k-subsets of X, A
k

family 572X is called intersecting if F N F/ ¢ holds for all F, F/ c &,

Theorem § If &% 27 is intersecting then

| & |<2"-1 holbs, 1)

Proof There are 2"-! pairs {C, X ~C} of complementary subsets of X, Since
CUX=C)=¢, . F(C, X-C}|<1 holds for each of them, JJj

Erdés, Ko and Rado [EKR] were the first to observe the validity of (1) and
they proved that there are very many families &, achieving equality in 1),
Mege exactly, they proved that for every intersecting family € 2% there exists
another intersecting famijly #, @ & <27, such that | & | =2"-! holds,

The Erdés-Ko-Rado Theorem deals with the much more difficult case when
|F| =k is assumel for all FE %, i, e., & 1is a k-graph,

Theorem 1 (Erdés-Ko-Rado Theorem, special case) , Suppose that SFC
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X
( . ) is intersecting, n>2k, Then

n—1
Fi=( ). @
k-1
The main purpose of the piesent rarer is 10 review ail known (to the authors)
proofs and give some generalizations {0 other hvpergrapls,
For an integer 11, a {amily & is called i-inteisectirg if |FNF’ !>t holds
for all F, F/' C &,
To close this section let vs state the gereral case of the Erdés-Ko-Rado Theorem,
Theorem 2 (E:1d6s-Ko-Raco Theorem, gereral case) , Suppose thay &

X
( ) is f-intersecting and #n>=n(k, t), Then
k

n-—-1

i< ( k_t). 3>

Remark By now it is known that thLe best possible value of ny(k, )? is (k-
t+ D@+ 1)(ef, [F1] and [W]),

2 Shifting

That is how the original proof went, Since then shifting has become one of
the most powerful tools in extreral set tkeory,

Definition 2,1 The (i, 7)-shifi, For a family & c2° and 1</ <j<<n, define
S F)={8;(F) s+ F&c %} where

I =(F= (iDL} it iCF, i¢F and F/ ¢ .5,
S, (F) = {

F otkerwise,

Propositien 2.2 (i) [S(P)| =|Fls GiI) IS =|&F|; (i) If F is
intersecting then so iz S (&),

Proof (i) and (ii) are imrmediate from the definition, To prove (iii), Suppose
by contradiction that there exist sets F/, G in the intersecting family & suvech that

S;(FYN S;;(G) =¢ holds, ¢S )

Since FN Gx¢ by asstmrptior, ard tte only element which can be deleted is
i, it follows that FNG={j}.

If both F and G changed by tte (7, 7)-shift, tten i €S5,(F)[S,(G) would
hold, contradicting(4), Ttis we ray assime ttat S,(F)=F, S (G)=(G~ N},

Similarly, /€ F would contradict (4), Thus tte only reason rot 10 weplace F
by F’/ =(F— {7} {7} during the - j-shift is because F/ € &, However, F/[ |G
=F[8,4G) =S (F)S,(F)=¢, a contradiction, Jij
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We can now prove (2),
The first proof of the Erdés-Ko-Rado Theorem, Arply induction on n and
prove it simultaneously for all k<Cn/2,

2k
(a) n=2k, We argue as with the proof of (1), Tte ( )k—subse:s of X can
k

2k 2k-1
be partitioned in:o %( ) :( ) pairs of complementary sets, not both of
k k-1
2k-1
which can be in an intersecting family, This yields [ F | < ( ), as desired,
k-1

(b) n>2k, Define F =, Fi=8u(F =), i=1, -, n=1, By Proposition

X
2.2 we have | & | =| % ,-,|, and fn_lc( ) ) is intersecting,

Ceine @ ={FCF, tn¢F}, #={F-{n)snCFes)}.

n—2
H|, Gc#, and thus by induction |€9|<( )

Clearly | & | = |Z] +

n—2 n—2

holds, Consequently, |s#]<< ( ) would be sufficient to show|.5# [<( )
2 k-1

(-0

{1a Z, "ty n"l}
The desired upper bound for tke cardinality of %c(

k-1
follow from the induction hypothesis once we prove the following.,

Proposition 2.3 ¢ is intersecting,

Proof Suppose the contrary, i.e., there exist disjoint sets H, H" € . Since
FHUH’ | =2(k~1)<<n-1, there exists some i, 1<<i<n satisfying i¢ H|_JH’, By
definition F=FH|_J{n} is in & ,-;, Since n€F then F€ &, and consequently, F¢&
&, holds for all 1</<<n- 1, This means that S,(F)=F, i.e., F did not get
replaced during the (7, n)-shift, This can happen only if (F~ {n})| J{i} =(HU{DH
€ & ;-1 and consequently (H|_J{/} € &% ,-; hold,

However, (H| J{i})[\(H’| J{n})=¢, a contradiction,

3 Shadows

Given a k-graph % and an integer I, 1<<I<k, the l-shadow 0, (5") is defined
as follows,
o(F)={G:|G|=l, and for some Fc.&#, GCF},
Given an integer m and a k-graph & of cardinality m, what can one say
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k
about |0,(F)|7 Clearly, |o(F)|< ( ) | # | holds, with equality if and only
1

if |F[F’|<I hkolds for all distinct F, F’ € %,

The real problem is to get best possible lower bounds, The answer is given by
the Kruskal-Katona Theorem, one of the most widely used results concerning finite
sets, We shall only state and prove a numerical consequence of it which is due to
Lovasz,

Kruskal-Katona Theorem ([Kr], [Ka2], [I1]), Let & be a k-graph, and

X
suppose |7 |>( ) with x>k, real, Then
k

X
o1 = ( z ) holds for all 0<</<Fk, (5)

First note that it is sufficient to prove (5) for the case [ =k - 1 (and then apply
x
this case k—1 times noting the monoctonicit: of( ) as a function of x),
s

The proof which we are going to present is from [F2] and is based upon the
fact that the (7, j)-shift does not increase the shadow,

X
Proposition 3.1 ILet 7 ( ) be a k-graph, and suppose 1</<j<<n, Then
k

O1-1(Sy(F I 8,041 (F ). Q)

Equation (6) can be proved by a relatively simple case by case analysis,
which we leave to the reader,

Define inductively & = and &, =5,(F ,.1), 2<<i<<n, In view of (6) we
have |0, (&) |<|0:., (5 )|. Therefore it is sufficient to deal with & ,.

Recall the definitions, S, (1)={F-{1}:FE€ 5.}, F(D={FEF,:1¢F},

Claim 3.2, (i) 0 ((F D)= F (D] + 012 (F (AN GO (F (I
Fa(D),

Proof of the claim By definition, & . (1)co,-, (&) and {1 JG: GEo;.,
(F (1))} co1(F,) hold, Moreover, these two families are disjoint, proving (i),

To prove (ii) choose (G, H) with H € & (1), GcH, |G| =k-~1, Let i
be the unique element of H-G,

The only way H was not replaced by H’/ =G| J{i} when S, was applied is that
H’ ¢ & -y and, consequently, H’/ € &% ,, This pioves G & & ,(1), as desired, [}

Now the proof of (€) is easy, Apply incvction on k and for given k, om
| & |; of course, the case | &% | =1 is trivial, We distinguish two cases,

x—1 x-1
(2) |&:<1)|>( ol ) By induction |ak_2(.g?’,,(1))|>( - ) and thus
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by (i), |o,,-1(¢%",.)l,>/( ::i )+( ::: ):( k_x1~ ) follow,

x-1
(b) |y”(1)|<( . ) In view of (ii), | .(1)|=k and thus x-— 1>k

follows, On the other hand,
— x x=1 x-1
If,(1)|=|$|—|g~,(1)1>( - - )
k ) ( k-1 ) ( k
Applying the induction hypothesis and using (ii), |&F (1) = 101 (F W (AN =

x-1
( ) follows, a contradiction, JJjj
k-1

Erdos-Ko-Rado from Kruskal-Katona (ef, [Da], [Kal]l), Suppose that

n—1

F = ()Z), n=2k, and | |> (:—i) =( k). Define the complementary family

n -

X

n-1
@ = {X—F:Fegf"}c( ) By($)|0(%) | > ( ] ),and thus |5 | + |0(9)]
7n

-k
1 n—-1 n

()} )+ .

Consequently there is some FC . [ o,(¥), Since Fco(¥), FcX-F' for
some F/ € &, This implies F[ \F/ =¢, i, e., & is net intersecting, [l

4 Cyclic Permutations

In thi$ section we reproduce the short proof of (2) given by Katona [Ka3],

For any of the (n= 1)} cyclic permutations x4y, -+, @, of 1, 2, e/ n,
consider the k-graph S (x) consisting of the n blecks eof Iength k (for each 1
there is one such block starting at ¢, namely, a,, a,,y, *-g;,;., (index addition is
performed modulo n),

Claim 4.1 Suppose that @ . (x) is an intersecting subfamily, Then |® |<k,

Proof Without loss of generality, we may assume that A={a -, a,}€¥,
Being intersecting implies that for each G €% either its first or last element is in
A, A priori this gives 2(k— 1) more candidates outsice A4 for memtership in &,
We can group them into k-1 pairs by associating the one ending in e, with the
‘one starting in ¢ ,,, 1<\/<k-1, Since the two k-sets are disjoint in each pair,
|| <t+k-1=k fottows, |l

Let us now estimate the number M of pairs (F, 7), where FC%, n is a cyclic
permutation and F € s (x),

For each k-set F there are ky (n—k)1 cyclic permutations » with F € g (1),



+i P.%éi&%:ﬁ;%*ﬁ—ﬁiiﬂﬁﬁ%ﬁm 117

Thus M = | &F |kj(n=k),

On the other hand, claim 4, 1 implies M<<k(n- 1)), Consequently, [&F =<
n—1

ke(n— 1)1 =( ), follows as Cecired,
k-1

ky (n— Ky

5 Delsarte’s Linear Programming Bound: Lov sz’ Proof
Let Al,---,AGZ) be an arbitrary fixed erdering of all the k-subsets of X, For

an intersecting family &% ()Ig)’ let v(F)=(vy, -, v (Z)) be its characteristic
vector, i, e., v;=1 or 0 according to whether 4,€ & or 4,Z.% helds,

Let B be an (,é) by (k) real symmetiic matiix whose gemeral entry b, satisfies
b; =0 whenever A |4,%¢,

Let I and J deno.e the (11:) by (Z) identity, and all I’s matrices, tespectively,

Claim 5.1 If B+I-cJ is pocitive semi-defifiite for seme posiiive ¢, then,
| |<1/e. |

Proof Consider y=v(B+I~cI)T, By assumption, vBuT =0, Also vIvT = |.5 |
and v&F V" = |5 |? are immediate from the definition, Thus y= |5 | -c|5 |2,

On the other hand, y:-0 foilcws fiom positive semi-definiteness, i.e, c|.5 |2
<|&# |, or equivalenily, | |<1/c, B

n—k—1\-1

o1 it 474=¢

Following Lovasz [L2] we define B=(b;) by b, =
0 otherwise.
Te prove (2) we need to compute the eigenvalues of B, Obviously, the all I's

vector is a common cigenvector of O, I and J with respeetive eigenvalues fk—_k,

n=1\-1

k1) 7o

To ptove positive semi-defini eness we have to show that all the remaining

1 and (Z), Thus it is annihilated by B=DB+1- (

cigenvalues of B are at lecast -1, It is easy to give eigenvectors having eigenvalue
-1, namely for each pair (x, ¥), x, y€ X define v(x, y)=(v,, vl ) by
k
f Loif Af {x, y}={x},
Ui=\ _1 lf Allj{x’ y}'—:{y}.
0 otherwise,

Direct computaiion shows that v(x, y)B= —uv(x, y) holds, The v(x, y) span

P P n .
a vector space of dimension n— 1, To find the remaining (k) —(n— 1)~ 1eigenvectors
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we have to do some more work, For 2<{;<{k and any two disjoint ;/~-clement subsets

C={X1,“‘9Xi}, D={y1,---,yl} of X7 define the vector u(C’ D) = Cuyyerepu (Z))by

i

{ (= 1)1p0450 4 A M {x, y}| =1 holds for 1<<I<i,
U; =

0 otherwise,
Claim 5.2
n—k—ﬁ
_ -\ k-1
u(C, D)B=(-1) TN u(C, D), )
(i)
n—k—-1\"1 _. .
Proof Set 6:( -1 and compute the " entry v, of w(C, D)B, This is

simply the dot product of u; and the column of B belonging to the set A,

Suppose first that |A4,[ {x, ¥,}|=1 for 1<I<</, The only way to get a non-
zero (actually 6 or —8) is for 4 € (‘)li) to satisfy A |(CUD)= (CD)-4,,
ice., if A and A4, are complementary inside C| JD, Consequently, v,=(-1)96
n—k—1i

P ) u, follows.

If |4 {x;, y}|=2 for some [, then there is no way to get a non-zero term,
yielding v, =0,

If A, ({x, ¥} =¢ holds, then we can associate to every position 4 giving
a non-zero term and satisfying A(){x,, #,} = {x;} the position (4~ {x,}){y} siving
a non-zero term exactly of the opposite sign, This gives again v,=u=0, |

Next we are going to exhibit ( ?)— ( z."_ 1) linearly independent vectors u(C,
D). This will show that the eigenspace belonging to the eigenvalue (- 1)
n-k—1 n—k-1 . : n n . .
( ki )/( -1 ) has dimension at least ( z’)_(i—1> for i=0,1,,k, Since
these numbers sum up to (Z) equality holds everywhere, Consequently, we have

found all the eigenvalues and the positive semi-definiteness follows from ("k_ _kz._ Z)

<("]:_k1'1 , valid for 1<i<k,
If C={x, *+, x,} and D={y,, -, ¥} with x;<y; then we write C<D, It

is not hard to see that there are exactly (’;)—(z"_ 1) sets D € ()f) for which

some C € ("f ) satisfying C<D exists, Fix some C=C(D) with this property for

each such D,
Then the vectors u(C(D), D) are linearly independent, and we are done. [l
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6 Stronger results for large #

Let L={l;, -, I} with 0<],<---<l, <k, A family & (2{) is called an

L-system it |F[|F/ | €L holds for ail distinct F, Ftcs,

In this terminology S is t-interseciing iff it is an L-system with L={¢, t+
1, ., k-1},

In this section we are going to prove the following general result,

Theorem §.1 [DEF], Suppose that F — ()15) is an L-system, Then

(i")-

Note that for L= {ty o, k- 1}, the upper bound becomes (Z::), so that this

1EL

result generalizes the Erdds-Ko Rado Thecrem,

Proof Apply induction on |L| =s, In the case s=0, the upper bound |& |
<1 is trivially true, Supposing the theorem is true for s— 1, we attack the case
(L] =s,

(a) [ =0, For each x€ X the family %(x) ={Fe & ixCF} isan L"-System
with L’ ={[,, .-, I,}, Thus by induction

-1
|F ol < 1T Z o
Siss i
Since S_\ | & (x)| =k| & | holds, we obtain
zEY
1. 1 - 17_l

2<i<s i IGL
as desired,

(b) 4,>0, If |F(F’ |, holds for all F, F’ €& then & is actually an

n—1
p— follows by

2<i<s i

T TRIN I;}-system and the much s

induction,

Suppose next that |F)[\F,| =i, for some Fi, F,e 5, Set G=F,(\|F,, If G
F for all F € %, then replacing & by {F-G:F c&}, k by k=1, and L by
{0, I;=1, -, I,=1I;} brings us back to case (a),

Suppose finally that G&F, holds for some Fe o,

Claim g.2 |FM(F(JF,|_JF;)|>1; holds for all F €.,

Proof Since 5 is an L-system, |F[\F,|>I, for 1=1, 2, 3, It |F[\(F,UJ
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Fpl —11, then FIF, = F[F,=G follows, In view of |F[\F,|=l,, this forces F[ )
(F3-G)=¢, yiclding the ciaim, i

F+ s F ~ ~
For each H & (D%ingfs ), define F (H)={F € &% 1 HcF}, Then &
1 T
(H) is an {l,, -, [,}-system, Thus the induction hypothesis and the claim imply:

| — —i 3k n—1.
i< > g <( )}l— =t
HE(FUF guF g 2%~s 250 i

Hlo=ly+1

and the statement of the theorem follows provided Z_§1> (3kk ). |
Lt

Remark From the proof it is clear that for [;>>0 epuality can hold only if

all F ¢ &% contain a fixed [,-clement set,

7 Edge-fillings by pairs

Let & be an intersecting k-graph, we cail & non-irivicl if [} F =¢ holds,
1€~

Let ys call a family @ an cdge-filling of & if for every FE€ & there exists
some G €% satisfying GCF,

Theorem 7.1 Every non-trivial intersecting family & c ()li) possesses an
1 » P .X . . 2
edge-filling ¥ ( 7, ) satisfying lg|<k-k+1,

Proof If & is 2-intersecting, then ( \) is an edge-filling of 5 for every

F € %, Thus we may assume that there exist F,, F,€.% with F\[ |F,={x} for
some x € X,

Since & is non-trivial, x ¢ F,€.% holds for some Fy€.5 ,

Now the theorem follows from the following claim,.

Claim 7.2 < ={{y, 2} syeF, ~{x}, 2EF,~ {x}}{ {x, u} su€F3} is an
edge-filling of & .

Proof Take an atbitrary F €5 and distinguish two cases,

(a) x¢F, Since % is intersecting, F[ |(F;~ {x})3¢ holds for i=1, 2,
Consequently I contains cne of the 2-subsets in the first part of &,

(b) xcF, Agein, since & is intersecting, F[ |F;=¢, so that F must contain
one of the 2-subsets in the second part of &, Jj F has to contain one of the 2-
subsets in the seccnd part of &, [l

Remark More careful analysis shows that one can find an edge-filling &

wih |% | <i?—Fk+ 1 unless & consists of the k2~k+ 1 lines of a projective plane
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of order k—1, We hope to retu-n to this and more general problems in a subsequent
baper,

8 The Erdos—-Ko-Rado Theorem for General Hypergraphs

Let 2 be a k-graph, For a vertex x of g its degreeis the number of edges
of s which contain x, Clearly, thece edges form an intersecting hypergraph, Let
A( ) denote the maximum. Cegree of ¥ .

We say that ¥ has the Erdés-Ko-Rado property if A(#)>=|5| holds for
all intersecting subfamilies & — 3¢,

For a set I, recall the definition ) (I) = {H~13IcHE '}, Let 4 () denote
the maximum of | 2 (I)| over all 7-sets I, Clearly, 4,()=4(#) and 4 () =1

Theorem 8.1 Suppcse that (k2—k+1)24,(SFHI<L,(SE) holds, Then S has
the Erdés-Ko-Rado propeitiy,

Proof Iet & —Z¢ beintersecting, If [ F=a¢, then [F | <4, () is

1€

is non-trivial, By Theorem 7.1 there

immediate, Thus we may suppose that 57
exists an edge-filling & of 4, consisting of 2-element sets and satisfying || <
k*~Fk 4+ 1, This implies

1F1< S 1F @< S 1920 < -k+ DA(IKI<HH), BE

CEr A4

Remark Sirce A4(2¢)= "=1Y and A(FE) = n=2
k-1 k

_2) hold for ¢ =

()]f), Theorem &.1 implies (2) for n>(k—1)(k2-k+1), As we shall see later,

it implies (3) as well,

Now: we give a construction showing that the theotem is in a sense-best possible,
Let k—1 be an integer such that there is a projective plane of order k-1,

If n is a sufficiently large multiple of k?—k+1 then one can find k-1

orthogonal partitions of X into (k%?—k+ 1)-element sets, That is, there exist B; €
(kzi(]H_ 1), 1<i<k,1<j<n/(k*-k+1); =r,such that Byl || B, =X, 1<i<k,

and | B, B,|<1 for 7/xs and all j, 1,

Now form a k-graph .2¢° by replacing each B;; by the set of lines of a projective
plane of order k—1 on B;, Then |9¢|=(k-1n, AGE)=(k-1)k=k~k and
4,(P€) =1, However, the size of the largest intersecting subfamily of .2 is &%
—k+1, namely, each projective plane of order k—1 gives such an example,

Let us conclude this section with a well known open problem, Call S c2¢
a complex, if G HE .2 implies G & SF,

Conjecture 8.2 (Chvatal [C] Suppose that S¢ is a complex, and F C.8¢

is intersecting, Then -|% |<<A(£¥) holds,
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