Old and New Proofs of the Erdös-Ko-Rado Theorem

P. Frankl* and R. L. Graham

(AT &T Bell Laboratories, Murray Hill, New Jersey 07974)

ABSTRACT

The Erdös Ko-Rado Theorem is a central result of combinatorics which opened the way for the rapid development of extremal set theory. Proofs of it are reviewed and a new generalization is given. For a survey of results related to the Erdös-Ko-Rado Theorem see [DF].

Key Words Erdős-Ko-Rado theorem, intersecting family, extremal set theory, combinatories.
(1980 AMS Subject Classification (1985 Revision) 05A15)

1 Introduction

Let X be a finite set of n elements. Usually we suppose that $X = \{1, 2, \dots, n\}$. Let 2^x be the power set of X and $\binom{X}{k}$ the set of all k-subsets of X. A family $\mathscr{F} \subset 2^X$ is called intersecting if $F \cap F' = \phi$ holds for all F, $F' \in \mathscr{F}$.

Theorem 0 If $\mathcal{F}\subset 2^{\vee}$ is intersecting then

$$|\mathscr{F}| \leqslant 2^{n-1} \text{ holbs}_{\bullet}$$
 (1)

Proof There are 2^{n-1} pairs $\{C, X-C\}$ of complementary subsets of X. Since $C \cap (X-C) = \phi$, $|\mathcal{F} \cap \{C, X-C\}| \le 1$ holds for each of them.

Erdös, Ko and Rado [EKR] were the first to observe the validity of (1) and they proved that there are very many families \mathscr{F} , achieving equality in (1). More exactly, they proved that for every intersecting family $\mathscr{G} \subset 2^{\times}$ there exists another intersecting family \mathscr{F} , $\mathscr{G} \subset \mathscr{F} \subset 2^{\times}$, such that $|\mathscr{F}| = 2^{n-1}$ holds.

The Erdös-Ko-Rado Theorem deals with the much more difficult case when |F|=k is assumed for all $F\in\mathscr{F}$, i. e., \mathscr{F} is a k-graph.

Theorem 1 (Erdös-Ko-Rado Theorem, special case). Suppose that &

Received September 13, 1989

^{*} Author's Permanen affiliation: CNRS, University of Faris VII.

 $\binom{X}{k}$ is intersecting, $n \ge 2k$. Then

$$|\mathscr{F}| \leqslant {n-1 \choose k-1}. \tag{2}$$

The main purpose of the present paper is to review all known (to the authors) proofs and give some generalizations to other hypergraphs.

For an integer $t \ge 1$, a family $\mathscr F$ is called t-intersecting if $|F \cap F'| \ge t$ holds for all F, $F' \in \mathscr F$.

To close this section let us state the general case of the Erdös-Ko-Rado Theorem.

Theorem 2 (Erdös-Ko-Rado Theorem, general case). Suppose that $\mathscr{F}\subset \binom{X}{k}$ is t-intersecting and $n\!\geqslant\! n_0(k,\ t)$. Then

$$|\mathscr{F}| \leqslant {n-t \choose k-t}. \tag{3}$$

Remark By now it is known that the best possible value of $n_0(k, t)$ is (k-t+1)(t+1)(cf, [F1]) and [W].

2 Shifting

That is how the original proof went. Since then shifting has become one of the most powerful tools in extremal set theory.

Definition 2.1 The (i, j)-shift. For a family $\mathscr{F} \subset 2^{\gamma}$ and $1 \le i < j \le n$, define $S_{ij}(\mathscr{F}) = \{S_{ij}(F) : F \in \mathscr{F}\}$ where

$$S_{ij}(F) = \begin{cases} I' = (F - \{j\}) \bigcup \{i\} \text{ if } j \in F, i \notin F \text{ and } F' \notin \mathcal{F}, \\ F \text{ otherwise.} \end{cases}$$

Proposition 2.2 (i) $|S_{ij}(F)| = |F|$; (ii) $|S_{ij}(\mathcal{F})| = |\mathcal{F}|$; (iii) If \mathcal{F} is intersecting then so is $S_{ij}(\mathcal{F})$.

Proof (i) and (ii) are immediate from the definition. To prove (iii), suppose by contradiction that there exist sets F, G in the intersecting family \mathscr{F} such that $S_{ii}(F) \cap S_{ii}(G) = \phi$ holds. (4)

Since $F \cap G \neq \phi$ by assumption, and the only element which can be deleted is i, it follows that $F \cap G = \{i\}$.

If both F and G changed by the (i, j)-shift, then $i \in S_{ij}(F) \cap S_{ij}(G)$ would hold, contradicting (4). Thus we may assume that $S_{ij}(F) = F$, $S_{ij}(G) = (G - \{j\}) \cup \{i\}$.

Similarly, $i \in F$ would contradict (4). Thus the only reason not to **replace** F by $F' = (F - \{j\}) \cup \{i\}$ during the i - j-shift is because $F' \in \mathscr{F}$. However, $F' \cap G = F \cap S_{ij}(G) = S_{ij}(F) \cap S_{ij}(F) = \phi$, a contradiction.

We can now prove (2).

The first proof of the Erdös-Ko-Rado Theorem. Apply induction on n and prove it simultaneously for all $k \le n/2$.

(a)
$$n=2k$$
. We argue as with the proof of (1). The $\binom{2k}{k}$ k-subsets of X can

be partitioned into
$$\frac{1}{2} \binom{2k}{k} = \binom{2k-1}{k-1}$$
 pairs of complementary sets, not both of

which can be in an intersecting family. This yields
$$|\mathscr{F}| \leq {2k-1 \choose k-1}$$
, as desired.

(b)
$$n>2k$$
, Define $\mathscr{F}_0=\mathscr{F}$, $\mathscr{F}_i=S_{in}(\mathscr{F}_{i-1})$, $i=1, \dots, n-1$. By Proposition

2.2 we have
$$|\mathscr{F}| = |\mathscr{F}_{n-1}|$$
, and $\mathscr{F}_{n-1} \subset {X \choose k}$ is intersecting.

Define
$$\mathscr{G} = \{F \in \mathscr{F}_{n-1} : n \notin F\}, \ \mathscr{H} = \{F - \{n\} : n \in F \in \mathscr{F}\}.$$

Clearly
$$|\mathscr{F}| = |\mathscr{G}| + |\mathscr{H}|$$
, $\mathscr{G} \subset \mathscr{H}$, and thus by induction $|\mathscr{G}| \leq {n-2 \choose k-1}$

holds. Consequently,
$$|\mathcal{H}| \le {n-2 \choose k-2}$$
 would be sufficient to show $|\mathcal{F}| \le {n-2 \choose k-1}$

$$+ {n-2 \choose k-2} = {n-1 \choose k-1}.$$

The desired upper bound for the cardinality of $\mathscr{H} \subset \binom{\{1, 2, \dots, n-1\}}{k-1}$ will

follow from the induction hypothesis once we prove the following.

Proposition 2.3 \mathcal{H} is intersecting.

Proof Suppose the contrary, i.e., there exist disjoint sets H, $H' \in \mathcal{H}$. Since $|H \cup H'| = 2(k-1) < n-1$, there exists some i, $1 \le i < n$ satisfying $i \notin H \cup H'$. By definition $F = H \cup \{n\}$ is in \mathscr{F}_{n-1} . Since $n \in F$ then $F \in \mathscr{F}$, and consequently, $F \in \mathscr{F}_i$ holds for all $1 \le i \le n-1$. This means that $S_{in}(F) = F$, i.e., F did not get replaced during the (i, n)-shift. This can happen only if $(F - \{n\}) \cup \{i\} = (H \cup \{i\}) \in \mathscr{F}_{i-1}$ and consequently $(H \cup \{i\}) \in \mathscr{F}_{n-1}$ hold.

However, $(H \cup \{i\}) \cap (H' \cup \{n\}) = \phi$, a contradiction.

3 Shadows

Given a k-graph \mathscr{F} and an integer l, $1 \le l \le k$, the l-shadow $\sigma_l(\mathscr{F})$ is defined as follows.

$$\sigma_l(\mathscr{F}) = \{G : |G| = l, \text{ and for some } F \in \mathscr{F}, G \subset F\}.$$

Given an integer m and a k-graph \mathscr{F} of cardinality m, what can one say

about $|\sigma_l(\mathcal{F})|$? Clearly, $|\sigma_l(\mathcal{F})| \leq {k \choose l} |\mathcal{F}|$ holds, with equality if and only if $|F \cap F'| < l$ holds for all distinct F, $F' \in \mathcal{F}$.

The real problem is to get best possible lower bounds. The answer is given by the Kruskal-Katona Theorem, one of the most widely used results concerning finite sets. We shall only state and prove a numerical consequence of it which is due to Lovász.

Kruskal-Katona Theorem ([Kr], [Ka2], [I1]). Let \mathscr{F} be a k-graph, and suppose $|\mathscr{F}| \ge {x \choose k}$ with $x \ge k$, real. Then

$$|\sigma_l(\mathscr{F})| \geqslant {x \choose l}$$
 holds for all $0 \leqslant l \leqslant k$. (5)

First note that it is sufficient to prove (5) for the case l = k - 1 (and then apply this case k - l times noting the monotonicity of $\binom{x}{s}$ as a function of x).

The proof which we are going to present is from [F2] and is based upon the fact that the (i, j)-shift does not increase the shadow.

Proposition 3.1 Let $\mathscr{F} \subset {X \choose k}$ be a k-graph, and suppose $1 \le i < j \le n$. Then

$$\sigma_{k-1}(S_{ij}(\mathscr{F})) \subset S_{ij}(\sigma_{k-1}(\mathscr{F}))_{\bullet}$$
(6)

Equation (6) can be proved by a relatively simple case by case analysis, which we leave to the reader.

Define inductively $\mathscr{F}_1 = \mathscr{F}$ and $\mathscr{F}_i = S_{1i}(\mathscr{F}_{i-1})$, $2 \le i \le n$. In view of (6) we have $|\sigma_{k-1}(\mathscr{F}_n)| \le |\sigma_{k-1}(\mathscr{F})|$. Therefore it is sufficient to deal with \mathscr{F}_n .

Recall the definitions: $\mathscr{F}_n(1) = \{F - \{1\} : F \in \mathscr{F}_n\}, \mathscr{F}_n(\overline{1}) = \{F \in \mathscr{F}_n : 1 \notin F\}.$

Claim 3.2. (i) $\sigma_{k-1}(\mathscr{F}_n) \ge |\mathscr{F}_n(1)| + |\sigma_{k-2}(\mathscr{F}_n(1))|$; (ii) $\sigma_{k-1}(\mathscr{F}_n(\overline{1})) \subset \mathscr{F}_n(1)$.

Proof of the claim By definition, $\mathscr{F}_n(1) \subset \sigma_{l-1}(\mathscr{F}_n)$ and $\{1 \bigcup G: G \in \sigma_{k-2}(\mathscr{F}_n(1))\} \subset \sigma_{k-1}(\mathscr{F}_n)$ hold. Moreover, these two families are disjoint, proving (i).

To prove (ii) choose (G, H) with $H \in \mathscr{F}_n(\overline{1}), G \subset H, |G| = k-1$. Let *i* be the unique element of H - G.

The only way H was not replaced by $H' = G \bigcup \{i\}$ when S_{1i} was applied is that $H' \in \mathscr{F}_{i-1}$ and, consequently, $H' \in \mathscr{F}_{i}$. This proves $G \in \mathscr{F}_{i}(1)$, as desired.

Now the proof of (6) is easy. Apply induction on k and for given k, on $|\mathscr{F}|$; of course, the case $|\mathscr{F}| = 1$ is trivial. We distinguish two cases.

(a)
$$|\mathscr{F}_n(1)| \ge {x-1 \choose k-1}$$
. By induction $|\sigma_{k-2}(\mathscr{F}_n(1))| \ge {x-1 \choose k-2}$ and thus

by (i),
$$|\sigma_{k-1}(\mathscr{F}_n)| \ge {x-1 \choose k-1} + {x-1 \choose k-2} = {x \choose k-1}$$
 follow.

(b)
$$|\mathscr{F}_n(1)| < {x-1 \choose k-1}$$
. In view of (ii), $|\mathscr{F}_n(1)| \ge k$ and thus $x-1 > k$

follows. On the other hand,

$$|\mathscr{F}_{\mathfrak{n}}(\overline{1})| = |\mathscr{F}| - |\mathscr{F}_{\mathfrak{n}}(1)| \geqslant {x \choose k} - {x-1 \choose k-1} = {x-1 \choose k}.$$

Applying the induction hypothesis and using (ii), $|\mathscr{F}_n(1)| \ge |\sigma_{i-1}(\mathscr{F}_n(\overline{1}))| \ge {x-1 \choose k-1}$ follows, a contradiction.

Erdos-Ko-Rado from Kruskal-Katona (cf. [Da], [Ka1]). Suppose that $\mathscr{F}\subset {X\choose k}$, $n\geqslant 2k$, and $|\mathscr{F}|>{n-1\choose k-1}={n-1\choose n-k}$. Define the complementary family $\mathscr{G}=\{X-F:F\in\mathscr{F}\}\subset {X\choose n-k}$. By $(5)|\sigma_k(\mathscr{G})|\geqslant {n-1\choose k}$, and thus $|\mathscr{F}|+|\sigma_k(\mathscr{G})|>{n-1\choose k-1}+{n-1\choose k}={n\choose k}$ holds.

Consequently there is some $F \in \mathscr{F} \cap \sigma_k(\mathscr{G})$. Since $F \in \sigma_k(\mathscr{G})$, $F \subset X - F'$ for some $F' \in \mathscr{F}$. This implies $F \cap F' = \phi$, i. e., \mathscr{F} is not intersecting.

4 Cyclic Permutations

In this section we reproduce the short proof of (2) given by Katona [Ka3]. For any of the (n-1)! cyclic permutations $\pi: a_1, \dots, a_n$ of 1, 2, ..., n, consider the k-graph $\mathcal{F}(\pi)$ consisting of the n blocks of length k (for each i there is one such block starting at a_i namely, a_i , a_{i+1} , $\cdots a_{i+k-1}$ (index addition is performed modulo n).

Claim 4.1 Suppose that $\mathscr{G} \subset \mathscr{F}(\pi)$ is an intersecting subfamily. Then $|\mathscr{G}| \leq k$. Proof Without loss of generality, we may assume that $A = \{a_1 \cdots, a_k\} \in \mathscr{G}$. Being intersecting implies that for each $G \in \mathscr{G}$ either its first or last element is in A. A priori this gives 2(k-1) more candidates outside A for membership in \mathscr{G} . We can group them into k-1 pairs by associating the one ending in a_i with the one starting in a_{i+1} , $1 \leq i \leq k-1$. Since the two k-sets are disjoint in each pair, $|\mathscr{G}| \leq 1 + k - 1 = k$ follows.

Let us now estimate the number M of pairs (F, π) , where $F \in \mathcal{G}$, π is a cyclic permutation and $F \in \mathcal{F}(\pi)$.

For each k-set F there are k!(n-k)! cyclic permutations π with $F \in \mathcal{F}(\pi)$,

Thus $M = |\mathcal{F}| k! (n-k)!$.

On the other hand, claim 4. 1 implies $M \le k(n-1)!$. Consequently, $|\mathscr{F}| \le \frac{k \cdot (n-1)!}{k! \cdot (n-k)!} = \binom{n-1}{k-1}$, follows as desired.

5 Delsarte's Linear Programming Bound: Lov sz' Proof

Let $A_1, \dots, A\binom{n}{k}$ be an arbitrary fixed ordering of all the k-subsets of X. For an intersecting family $\mathscr{F} \subset \binom{X}{k}$, let $v(F) = (v_1, \dots, v\binom{n}{k})$ be its characteristic vector, i. e., $v_i = 1$ or 0 according to whether $A_i \in \mathscr{F}$ or $A_i \notin \mathscr{F}$ holds.

Let B be an $\binom{n}{k}$ by $\binom{n}{k}$ real symmetric matrix whose general entry b_{ij} satisfies $b_{ij} = 0$ whenever $A_i \cap A_j = \phi$.

Let I and I denote the $\binom{n}{k}$ by $\binom{n}{k}$ identity, and all I's matrices, respectively.

Claim 5.1 If B+I-cJ is positive semi-definite for some positive c, then $|\mathcal{F}| \leq 1/c$.

Proof Consider $y = v(B + I - cJ)v^T$. By assumption, $vBv^T = 0$. Also $vIv^T = |\mathscr{F}|$ and $v\mathscr{F}v^T = |\mathscr{F}|^2$ are immediate from the definition. Thus $y = |\mathscr{F}| - c|\mathscr{F}|^2$.

On the other hand, $y \ge 0$ follows from positive semi-definiteness, i.e. $c |\mathscr{F}|^2 \le |\mathscr{F}|$, or equivalently. $|\mathscr{F}| \le 1/c$.

Following Lovàsz [L2] we define $B = (b_{ij})$ by $b_{ij} = \begin{cases} \binom{n-k-1}{k-1}^{-1} & \text{if } A_i \cap A_j = \phi \\ 0 & \text{otherwise.} \end{cases}$

To prove (2) we need to compute the eigenvalues of B. Obviously, the all I's vector is a common eigenvector of B, I and J with respective eigenvalues $\frac{n-k}{k}$,

1 and $\binom{n}{k}$. Thus it is annihilated by $B = B + I - \binom{n-1}{k-1}^{-1} J$.

To prove positive semi-definiteness we have to show that all the remaining eigenvalues of B are at least -1. It is easy to give eigenvectors having eigenvalue

-1, namely for each pair (x, y), $x, y \in X$ define $v(x, y) = (v_1, \dots, v_{\binom{n}{2}})$ by

$$v_i = \begin{cases} 1 & \text{if } A_i \cap \{x, y\} = \{x\}, \\ -1 & \text{if } A_i \cap \{x, y\} = \{y\}, \\ 0 & \text{otherwise.} \end{cases}$$

Direct computation shows that v(x, y)B = -v(x, y) holds. The v(x, y) span a vector space of dimension n-1. To find the remaining $\binom{n}{k} - (n-1) - 1$ eigenvectors

we have to do some more work. For $2 \le i \le k$ and any two disjoint i-element subsets $C = \{x_1, \dots, x_i\}$, $D = \{y_1, \dots, y_i\}$ of X, define the vector $u(C, D) = (u_1, \dots, u\binom{n}{k})$ by $u_i = \begin{cases} (-1)^{|D\cap A_i|} & \text{if } |A_i \cap \{x_i, y_i\}| = 1 \text{ holds for } 1 \le l \le i, \\ 0 & \text{otherwise.} \end{cases}$

Claim 5.2

$$u(C, D)B = (-1) \frac{\binom{n-k-i}{k-i}}{\binom{n-k-1}{k-1}} u(C, D).$$
 (7)

Proof Set $\delta = \binom{n-k-1}{k-1}^{-1}$ and compute the r^{th} entry v_i of u(C, D)B. This is simply the dot product of u_i and the column of B belonging to the set A_{i} .

Suppose first that $|A_r \cap \{x_i, y_i\}| = 1$ for $1 \le i \le i$. The only way to get a non-zero (actually δ or $-\delta$) is for $A \in {X \choose k}$ to satisfy $A \cap (C \cup D) = (C \cup D) - A_r$, i.e., if A and A_r are complementary inside $C \cup D$. Consequently, $v_r = (-1)\delta \binom{n-k-i}{k-i} u_r$ follows.

If $|A_i \cap \{x_i, y_i\}| = 2$ for some l, then there is no way to get a non-zero term, yielding $v_i = 0$.

If $A_r \cap \{x_l, y_l\} = \phi$ holds, then we can associate to every position A giving a non-zero term and satisfying $A \cap \{x_l, y_l\} = \{x_l\}$ the position $(A - \{x_l\}) \cup \{y_l\}$ giving a non-zero term exactly of the opposite sign. This gives again $v_r = u_r = 0$.

Next we are going to exhibit $\binom{n}{i} - \binom{n}{i-1}$ linearly independent vectors u(C, D). This will show that the eigenspace belonging to the eigenvalue $(-1)^i \binom{n-k-i}{k-i} / \binom{n-k-1}{k-1}$ has dimension at least $\binom{n}{i} - \binom{n}{i-1}$ for $i=0,1,\cdots,k$. Since these numbers sum up to $\binom{n}{k}$ equality holds everywhere. Consequently, we have found all the eigenvalues and the positive semi-definiteness follows from $\binom{n-k-i}{k-i} \le \binom{n-k-1}{k-1}$, valid for $1 \le i \le k$.

If $C = \{x_1, \dots, x_i\}$ and $D = \{y_1, \dots, y_i\}$ with $x_i < y_i$ then we write C < D. It is not hard to see that there are exactly $\binom{n}{i} - \binom{n}{i-1}$ sets $D \in \binom{X}{i}$ for which some $C \in \binom{X}{i}$ satisfying C < D exists. Fix some C = C(D) with this property for each such D.

Then the vectors u(C(D), D) are linearly independent, and we are done.

6 Stronger results for large n

Let $L = \{l_1, \dots, l_s\}$ with $0 \le l_1 < \dots < l_s < k$. A family $\mathscr{F} \subset {X \choose k}$ is called an L-system if $|F \cap F'| \in L$ holds for all distinct F, $F' \in \mathscr{F}$.

In this terminology $\mathscr F$ is t-intersecting iff it is an L-system with $L=\{t,\ t+1,\ \cdots,\ k-1\}$.

In this section we are going to prove the following general result.

Theorem 6.1 [DEF]. Suppose that $\mathscr{F}\subset {X\choose k}$ is an L-system. Then

$$|\mathscr{F}| \leqslant \prod_{l \in L} \frac{n-l}{k-l}$$
 holds for $n \geqslant k \binom{3k}{k}$.

Note that for $L = \{t, \dots, k-1\}$, the upper bound becomes $\binom{n-t}{k-t}$, so that this result generalizes the Erdös-Ko Rado Theorem.

Proof Apply induction on |L| = s. In the case s = 0, the upper bound $|\mathscr{F}| \le 1$ is trivially true. Supposing the theorem is true for s - 1, we attack the case |L| = s.

(a) $l_1 = 0$. For each $x \in X$ the family $\widetilde{\mathscr{F}}(x) = \{F \in \mathscr{F} : x \in F\}$ is an L'-system with $L' = \{l_2, \dots, l_s\}$. Thus by induction

$$|\widetilde{\mathscr{F}}(x)| \leq \prod_{2 \leq i \leq s} \frac{n-l_i}{k-l_i}$$

Since $\sum_{x \in X} |\widetilde{\mathscr{F}}(x)| = k|\mathscr{F}|$ holds, we obtain

$$|\mathscr{F}| \leqslant \frac{n}{k} \prod_{2 \leqslant i \leqslant s} \frac{n-l_i}{k-l_i} = \prod_{l \in I} \frac{n-l}{k-l}$$

as desired.

(b) $l_1>0$. If $|F\cap F'| \neq l_1$ holds for all F, $F' \in \mathscr{F}$ then \mathscr{F} is actually an $\{l_2, \dots, l_s\}$ -system and the much stronger bound $|\mathscr{F}| \leq \prod_{2 \leq i \leq s} \frac{n-l_i}{k-l_i}$ follows by induction.

Suppose next that $|F_1 \cap F_2| = l_1$ for some F_1 , $F_2 \in \mathscr{F}$. Set $G = F_1 \cap F_2$. If $G \subset F$ for all $F \in \mathscr{F}$, then replacing \mathscr{F} by $\{F - G : F \in \mathscr{F}\}$, k by $k - l_1$ and L by $\{0, l_2 - l_1, \dots, l_s - l_1\}$ brings us back to case (a).

Suppose finally that $G \not\subset F_3$ holds for some $F_3 \in \mathscr{F}_{\bullet}$

Claim 6.2 $|F \cap (F_1 \cup F_2 \cup F_3)| > l_1$ holds for all $F \in \mathscr{F}$.

Proof Since \mathscr{F} is an L-system, $|F \cap F_i| \geqslant l_1$ for i = 1, 2, 3. If $|F \cap (F_1 \cup F_2)| = l_1$

 $|F_2| = l_1$, then $F \cap F_1 = F \cap F_2 = G$ follows. In view of $|F \cap F_3| \ge l_1$, this forces $|F \cap F_3| \le l_1$, the first $|F \cap F_3| \le l_1$.

For each $H\in \left(\begin{smallmatrix} F_1\bigcup F_2\bigcup F_3\\ l_1+1 \end{smallmatrix} \right)$, define $\widetilde{\mathscr{F}}(H)=\{F\in \mathscr{F}: H\subset F\}$. Then $\widetilde{\mathscr{F}}$

(H) is an $\{l_2, \dots, l_s\}$ -system. Thus the induction hypothesis and the claim imply:

$$|\mathscr{F}| \leqslant \sum_{\substack{H \subseteq (F_1 \cup F_2 \cup F_3), \\ |H| = l_1 + 1}} \prod_{2 \leqslant i \leqslant s} \frac{n - l_i}{k - l_i} < \left(\frac{3k}{k}\right) \prod_{2 \leqslant i \leqslant s} \frac{n - l_i}{k - l_i},$$

and the statement of the theorem follows provided $\frac{n-l_1}{k-l_1} > {3k \choose k}$.

Remark From the proof it is clear that for $l_1>0$ equality can hold only if all $F\in \mathscr{F}$ contain a fixed l_1 -element set.

7 Edge-fillings by pairs

Let \mathscr{F} be an intersecting k-graph, we call \mathscr{F} non-trivial if $\bigcap_{i \in \mathscr{F}} F = \phi$ holds.

Let us call a family $\mathscr G$ an edge-filling of $\mathscr F$ if for every $F\in\mathscr F$ there exists some $G\in\mathscr G$ satisfying $G\subset F$.

Theorem 7.1 Every non-trivial intersecting family $\mathscr{F} \subset {X \choose k}$ possesses an edge-filling $\mathscr{G} \subset {X \choose 2}$ satisfying $|\mathscr{G}| \leqslant k^2 - k + 1$.

Proof If \mathscr{F} is 2-intersecting, then $\binom{F}{2}$ is an edge-filling of \mathscr{F} for every $F \in \mathscr{F}$. Thus we may assume that there exist F_1 , $F_2 \in \mathscr{F}$ with $F_1 \cap F_2 = \{x\}$ for some $x \in X$.

Since \mathscr{F} is non-trivial, $x \notin F_3 \in \mathscr{F}$ holds for some $F_3 \in \mathscr{F}$.

Now the theorem follows from the following claim.

Claim 7.2 $\mathscr{G}=\{\ \{y,\ z\}:y\in F_1-\{x\},\ z\in F_2-\{x\}\}\bigcup\{\ \{x,\ u\}:u\in F_3\}$ is an edge-filling of \mathscr{F} .

Proof Take an arbitrary $F \in \mathscr{F}$ and distinguish two cases.

- (a) $x \notin F$. Since \mathscr{F} is intersecting, $F \cap (F_i \{x\}) \neq \phi$ holds for i = 1, 2. Consequently F contains one of the 2-subsets in the first part of \mathscr{G} .
- (b) $x \in F$. Again, since \mathscr{F} is intersecting, $F \cap F_3 \neq \phi$, so that F must contain one of the 2-subsets in the second part of \mathscr{G} . \blacksquare F has to contain one of the 2-subsets in the second part of \mathscr{G} .

Remark More careful analysis shows that one can find an edge-filling $\mathscr G$ with $|\mathscr G| < k^2 - k + 1$ unless $\mathscr F$ consists of the $k^2 - k + 1$ lines of a projective plane

of order k-1. We hope to return to this and more general problems in a subsequent paper.

8 The Erdös-Ko-Rado Theorem for General Hypergraphs

Let \mathcal{H} be a k-graph. For a vertex x of \mathcal{H} its degree is the number of edges of \mathcal{H} which contain x. Clearly, these edges form an intersecting hypergraph. Let $\Delta(\mathcal{H})$ denote the maximum degree of \mathcal{H} .

We say that \mathscr{H} has the Erdös-Ko-Rado property if $\Delta(\mathscr{H}) \geqslant |\mathscr{F}|$ holds for all intersecting subfamilies $\mathscr{F} \subset \mathscr{H}$.

For a set I, recall the definition $\mathcal{H}(I) = \{H - I : I \subset H \in \mathcal{H}\}$. Let $\Delta_i(\mathcal{H})$ denote the maximum of $|\mathcal{H}(I)|$ over all i-sets I. Clearly, $\Delta_1(\mathcal{H}) = \Delta(\mathcal{H})$ and $\Delta_i(\mathcal{H}) = 1$

Theorem 8.1 Suppose that $(k^2-k+1)\Delta_2(\mathcal{H}) \leq \Delta_1(\mathcal{H})$ holds. Then \mathcal{H} has the Erdös-Ko-Rado property.

Proof Let $\mathscr{F}\subset\mathscr{H}$ be intersecting. If $\bigcap_{I\in\mathscr{I}}F\neq\phi$, then $|\mathscr{F}|\leqslant \Delta_1(\mathscr{H})$ is immediate. Thus we may suppose that \mathscr{F} is non-trivial. By Theorem 7.1 there exists an edge-filling \mathscr{G} of \mathscr{F} , consisting of 2-element sets and satisfying $|\mathscr{G}|\leqslant k^2-k+1$. This implies

$$|\mathscr{F}| \leqslant \sum_{G \in r} |\mathscr{F}(G)| \leqslant \sum_{G \in r} |\mathscr{H}(G)| \leqslant (k^2 - k + 1) \Delta_2(\mathscr{H}) \leqslant \Delta_1(\mathscr{H}), \quad \blacksquare$$

Remark Since $\Delta_1(\mathcal{H}) = \binom{n-1}{k-1}$ and $\Delta_2(\mathcal{H}) = \binom{n-2}{k-2}$ hold for $\mathcal{H} = \binom{X}{k}$, Theorem 8.1 implies (2) for $n > (k-1)(k^2-k+1)$. As we shall see later, it implies (3) as well.

Now we give a construction showing that the theorem is in a sense best possible. Let k-1 be an integer such that there is a projective plane of order k-1.

If n is a sufficiently large multiple of k^2-k+1 then one can find k-1 orthogonal partitions of X into (k^2-k+1) -element sets. That is, there exist $B_{ii} \in \begin{pmatrix} X \\ k^2-k+1 \end{pmatrix}$, $1 \le i < k$, $1 \le j \le n/(k^2-k+1)$; = r, such that $B_{i1} \bigcup \cdots \bigcup B_{ir} = X$, $1 \le i < k$, and $|B_{ij} \bigcap B_{ij}| \le 1$ for $i \ne s$ and all j, t.

Now form a k-graph \mathcal{H} by replacing each B_{ii} by the set of lines of a projective plane of order k-1 on B_{ii} . Then $|\mathcal{H}| = (k-1)n$, $\Delta(\mathcal{H}) = (k-1)k = k^2 - k$ and $\Delta_2(\mathcal{H}) = 1$. However, the size of the largest intersecting subfamily of \mathcal{H} is $k^2 - k + 1$, namely, each projective plane of order k-1 gives such an example.

Let us conclude this section with a well known open problem. Call $\mathscr{U} \subset 2^x$ a complex, if $G \subset H \in \mathscr{U}$ implies $G \in \mathscr{U}$.

Conjecture 8.2 (Chvátál [C] Suppose that $\mathscr H$ is a complex, and $\mathscr F\subset\mathscr H$ is intersecting. Then $|\mathscr F|\leqslant \Delta(\mathscr H)$ holds.

REFERENCES

- [C] Chvátál V, (1974). Problem 6, Hypergraph Seminar, 279-280, Lecture Notes in Math. Vol. 411, Springer-Verlag, Berlin.
- [Da] Daykin, D. E. (1974), Erdös-Ko-Rado from Kruskal-Katona, J. Comb. Th. A, 17, 254-255.
- [De] Delsart, P. (1973), An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10, 1-97.
- [DEF] Deza M., Erdös P. and Frankl P. (1978), Intersection properties of system of finite sets, Proc. Lendon Math. Soc. 36 3(1978), 368-384.
- [DF] Deza M. and Frankl P. (1983), The Erdös-Ko-Rado Theorem 22 years later, SIAM J. Discr. Math. 4(1983), 419-431.
- [EKR] Erdös P. Ko C. and Rado R. (1961), Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 2(1961). 313-320.
- [F1] Frankl P. (1978) The Erdös-Ko-Rado theorem is true for n=ckt, Coll. Math. Soc. J. Bolyai 18(1978), 365-375.
- [F2] Frankl P. (1984), A new short proof for the Kruskal-Katona theorem, Discrete Math 48(1984), 327-329.
- [K1] Katona G. O. H. (1964), Intersection theorems for systems of finite sets, Acta Math. Hung. 15(1964), 329-337.
- [K2] Katona G. O. H. (1966), A theorem of finite sets, Theory of Graphs, 187-207. Akad. Kiadô, Budapest, Proc. Collog., Tihany.
- [K3] Katona G. O. H. (1974), A simple proof of the Erdös-Ko-Rado theorem. J. Comb. Th. B 13(1974), 183-184.
- [Kr] Kruskal J. B. (1963), The number of simplices in a complex, Mathematical Optimization Techniques, 251-278, Univ. of. California Press, Berkeley.
- [L1] Loyasz L. (1979), Combinatorial problems and exercises, Akadémiai Kiadò, Budapest and North-Holland Publ., Amsterdam.
- [L2] Lovasz L. (1979), On the Shannon capacity of a graph, IEEE Inf. Th. 25(1979), 1-7.
- [W] Wilson R. M. (1984), The exact bound in the Erdös-Ko Rado theorem, Combinatorica 4(1984), 247-257.

厄多斯-柯-拉多定理的新老证明

P. 弗兰克尔, R. L. 格拉穆

(AT&T 贝尔实验室)

摘 要

厄多斯一柯一拉多定理是组合论的一个主要结果,它开辟了极值集 论 迅 速 发展的道路。本文回顾了它的多种证明,并给出了一个新的推广。有关该 定 理 的综合报告见[DF]。

关键词 厄多斯-柯-拉多定理,交族,极值集论,组合论。