
A
mong a variety of fundamental
themes running through Stan
Ulam’s mathematical research,
one that particularly intrigued

him was that of similarity. He was con-
stantly fascinated by the problem of quan-
tifying exactly how alike (or different)
two mathematical objects or structures
were, and during his career he discov-
ered many ingenious ways of doing so.
A good example is the well-known Ulam
distance between finite sequences, which
has recently been applied so effectively
in analysis of DNA sequences and recog-
nition of speech (Sankoff and Kruskal
1983). (Also see “Sequence Analysis:
Contributions by Ulam to Molecular Bi-
ology” in this issue.)

Here I will describe another measure
of similarity suggested by Stan, one ap-
plicable to a wide assortment of combina-
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torial structures. Like many seeds planted
by his fertile imagination, this similarity
measure has taken root and flowered in
the modem mathematical jungle.

The story begins one morning in late
July of 1977, during one of my aperi-
odic visits to Stan and Francoise’s mar-
velous house on the outskirts of Santa Fe.
Stan and I had just finished playing ten-
nis, which not only generated a plenti-
ful supply of perspiration (and consequent
thirst) but also inevitably led to a lively
discussion of the differences in the game
at an altitude of over 7000 feet, where the
balls are effectively more highly pressur-
ized, the air resistance is diminished, less
oxygen is available for demanding lungs,
and so on.

Perhaps stimulated by trying to get a
better grasp on understanding just how
various aspects of the game (such as the
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serve, the stroke, and the strategy) might
change under varying conditions, Stan
suddenly suggested, “Why not measure
the difference between objects by trying
to break them up into as few as possible
pairwise equal pieces?” At first I didn’t
see quite what Stan was driving at (which
happened fairly often), but after we talked
it over, it became clear that here was an
entirely new way of defining a measure
of similarity between two (or more) com-
binatorial structures. In fact, it is very
much akin to comparing two complex
molecules by breaking them up into a
number of pairwise identical fragments—
the smaller the number of pieces needed,
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the more similar are the molecules.
Our first application of the approach

was to a class of mathematical objects
known as graphs. Simply speaking, a
graph G consists of a set V of elements
called the vertices of G and a set E o f
certain pairs of elements of V called the
edges of G. Graphs are often pictured by
representing the vertices in V as points
and the edges as lines between the pairs
of points in E (Fig. 1).

Before proceeding to the main topic
of the article, we need two more ba-
sic definitions-those for isomorphism of
graphs and for a partition of the edge set
of a graph.



A Similarity Measure for Graphs

PARTITIONS OF THE EDGE SET

OF A GRAPH
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In the second, slightly more sophisti-
cated example G consists of a 3k-rayed
star, and G’ consists of k disjoint trian-
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CALCULATION

(a) G

k + l

Minimum Ulam Decomposition

1 3 2k – 1

2 4 2k

Minimum Ulam Decomposition
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on n vertices simultaneously into mutu-
ally isomorphic subgraphs. If U *(n) de-
notes the smallest number of subgraphs
needed for such an Ulam decomposition,
then we have the ultimate generalization
of Theorem 1 (Chung, Erdos, and Gra-
ham 1983):
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(a) d =3, n = 4
A 3-rayed star is (4,5)-unavoidable

Fig. 8. (a) Since a 3-rayed star is (4,5)-unavoid-

able, it is a subgraph of the single graph with

4 vertices and 5 edges. (b) Since a 4-rayed

star is (6,10)-unavoidable, it is a subgraph of

all four of the graphs with 6 vertices and 10

edges. (c) Since a 5-rayed star is not (6,12) -

unavoidable, it is not a subgraph of some

graph with 6 vertices and 12 edges.

That result, and many other similar re-
sults (which have interesting applications
to the design of VLSI chips, for exam-
ple) can be found in Chung and Gra-
ham 1978, 1979, 1983; Chung, Graham,
and Pippenger 1978; Bhatt and Leighton
1984; and Bhatt and Ipsen 1985. The
basic idea here is that a silicon chip (or
wafer) can have a universal graph G for
some class of graphs, say for all trees with
twenty vertices. When a particular tree T
is needed for connecting various compo-
nents on the chip, the appropriate edges
of G can be “activated” to realize T.

In the spirit of the current algorithmic
trend in mathematics, we might ask
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In conclusion, all of the preceding ques-
tions can also be asked about numerous

other combinatorial and algebraic struc-
tures, such as directed graphs, hyper-
graphs, partially ordered sets, finite met-
ric spaces, and so on. Some work on
those topics can be found in Chung, Gra-
ham, and Erdos 1981; Chung, Graham,
and Shearer 198 1; Babai, Chung, Erdos,
Graham, and Spencer 1982; Chung, Er-
dos, and Graham 1982; Chung 1983; and
Chung and Erdos 1983. Clearly, how-
ever, that area of research remains mostly
unexplored—and is one more example of
the prolific mathematical legacy left to us
by Stan Ulam. ■
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